https://home.mathematik.uni-freiburg.de/mathphys/lehre/SoSe21/DiffGeoII.html

Exercise sheet 4

Exercise 15. The radical of \mathfrak{g} . Give a proof of the following proposition (without using Theorem 1.2.19 for part (3)):

Proposition 1.2.16. Let g denote a finite dimensional Lie algebra.

- (1) $\mathfrak{g}/\operatorname{rad}\mathfrak{g}$ is semisimple.
- (2) If \mathfrak{g} is semisimple, then the center of \mathfrak{g} is trivial. Moreover, $\mathfrak{g} = [\mathfrak{g}, \mathfrak{g}]$.
- (3) If \mathfrak{g} is simple, then \mathfrak{g} is semisimple.

Exercise 16. The adjoint representation. Recall the following theorem.

Ado's Theorem. Let \mathbb{k} be a field of characteristic 0. Then any finite-dimensional Lie algebra over \mathbb{k} is isomorphic to a Lie subalgebra of $\mathrm{Mat}_{n\times n}(\mathbb{k})$ (for some $n\in\mathbb{N}$) whose Lie bracket is given by the commutator of matrices.

Use Proposition 1.2.16 (2) of Exercise 15 to give a proof of this theorem for semi-simple Lie algebras.

Exercise 17. Cartan subalgebras. Give a proof of the following statement:

A nilpotent Lie subalgebra \mathfrak{h} of a finite-dimensional Lie algebra \mathfrak{g} over \mathbb{C} is a Cartan subalgebra if and only if \mathfrak{h} is "self-normalizing", i.e. if and only if $\mathfrak{h} = N_{\mathfrak{g}}(\mathfrak{h})$, where

$$N_{\mathfrak{g}}(\mathfrak{h}) := \{ X \in \mathfrak{g} \mid \mathrm{ad}_{H}(X) \in \mathfrak{h} \text{ for all } H \in \mathfrak{h} \}$$

is the *normalizer* of \mathfrak{h} in \mathfrak{g} .

Hint. It is always true that $\mathfrak{h} \subset N_{\mathfrak{g}}(\mathfrak{h}) \subset \mathfrak{g}_0$, where $\mathfrak{g}_0 = \bigcap_{H \in \mathfrak{h}} \ker((\mathrm{ad}_H)^{\dim \mathfrak{g}})$. If $\mathfrak{g}_0 \neq \mathfrak{h}$, apply Lie's Theorem 1.2.7 to $\{\mathrm{ad}_H \mid H \in \mathfrak{h}\}$ acting on the \mathbb{C} -vector space $\mathfrak{g}_0/\mathfrak{h}$.

Exercise 18. The root space decomposition for \mathfrak{sl}_{n+1} . Let $\mathfrak{g} = \mathfrak{sl}_{n+1}(\mathbb{C})$ and let

$$\mathfrak{h} = \{ \operatorname{diag}(\lambda_0, \dots, \lambda_n) \mid \lambda_j \in \mathbb{C}, \lambda_0 = -\sum_{j=1}^n \lambda_j \}.$$

Moreover, let (e_0, \ldots, e_n) denote the standard basis of \mathbb{C}^{n+1} and set $E_{ij} = e_i \otimes e_j^*$ for all $i, j \in \{0, \ldots, n\}$. Show the following:

- (a) h is a Cartan subalgebra.
- (b) $\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{i \neq j} \mathbb{C} E_{ij}$ is the root space decomposition. Moreover, determine the $\alpha_{ij} \in \mathfrak{h}^*$ for which $\mathbb{C} E_{ij} = \mathfrak{g}_{\alpha_{ij}}$ holds.
- (c) $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta}$ for all $\alpha,\beta \in \mathfrak{h}^*$ with $\mathfrak{g}_{\alpha} \neq \{0\}$, $\mathfrak{g}_{\beta} \neq \{0\}$ and $\alpha+\beta \neq 0$, while $[\mathfrak{g}_{\alpha},\mathfrak{g}_{-\alpha}] \subset \mathfrak{h}$.
- (d) $X \in \mathfrak{g}$ is regular if and only if $X \in \operatorname{Mat}_{(n+1)\times(n+1)}(\mathbb{C})$ with $\operatorname{tr} X = 0$ has n+1 distinct eigenvalues.

Hint. Work with the Jordan basis for X and use the Jordan decomposition of X and ad_X .