Differentialgeometrie II Sommersemester 2021

https://home.mathematik.uni-freiburg.de/mathphys/lehre/SoSe21/DiffGeoII.html

Exercise sheet 3

Exercise 11. Nilpotent Lie algebras. Let \mathfrak{g} be a nilpotent Lie algebra.

- (a) Show that \mathfrak{g} is solvable.
- (b) Show that any Lie subalgebra and any quotient Lie algebra of \mathfrak{g} is again nilpotent.
- **Exercise 12.** Solvable Lie algebras. Let \mathfrak{g} be a Lie algebra and let \mathfrak{h} be an ideal of \mathfrak{g} .
 - (a) Show that \mathfrak{g} is solvable if and only if both \mathfrak{h} and $\mathfrak{g}/\mathfrak{h}$ are solvable.
 - (b) Show that (a) does not hold if "solvable" is replaced by "nilpotent". *Hint.* Consider g = { (^a₀ ^b_d) ∈ Mat_{2×2}(k) } with Lie bracket given by the commutator of matrices.

Exercise 13. Jordan decomposition. Let \mathfrak{g} be a Lie algebra over \mathbb{C} . For $Y \in \mathfrak{g}$, let $\operatorname{ad}_Y = D + N$ denote its Jordan decomposition with D diagonalizable, $N^m = 0$ for some $m \in \mathbb{N}$ and DN = ND.

Consider

ad⁰: End_C
$$\mathfrak{g} \to$$
End_C(End_C \mathfrak{g})
 $F \mapsto [F, -]$

so that

$$ad^0_{ad_V} = ad^0_D + ad^0_N$$

Show that ad_D^0 is diagonalizable, that $(\operatorname{ad}_N^0)^{2m} = 0$ and that $[\operatorname{ad}_D^0, \operatorname{ad}_N^0] = 0$, so that (*) is the Jordan decomposition of $\operatorname{ad}_{\operatorname{ad}_V}^0$.

Hint. For the first claim choose a basis of \mathfrak{g} such that D is given by $\operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, consider the corresponding basis E_{ij} of $\operatorname{End}_{\mathbb{C}}(\mathfrak{g})$ and determine $\operatorname{ad}_D^0(E_{ij})$. For the second claim argue as in the proof of Engel's Theorem.

Exercise 14. The radical of κ . Let \mathfrak{g} be a finite-dimensional Lie algebra over a subfield \Bbbk of \mathbb{C} and let κ be its Killing form. Show that $\operatorname{rad}(\kappa) := \{X \in \mathfrak{g} \mid \kappa(X, Y) = 0, \forall Y \in \mathfrak{g}\}$ is

- (a) an ideal in \mathfrak{g} , and
- (b) a solvable Lie subalgebra of \mathfrak{g} .

Hint. Determine the Killing form $\overline{\kappa}$ of $rad(\kappa)$ by observing that, as a k-vector space, $\mathfrak{g} = rad(\kappa) \oplus V$ for some vector subspace $V \subset \mathfrak{g}$.