https://home.mathematik.uni-freiburg.de/mathphys/lehre/SoSe21/DiffGeoII.html

Exercise sheet 2

Exercise 6. 1-parameter subgroups. Let G be a Lie group and let $\mathfrak{g} = \mathrm{T}_{\mathrm{id}}G$ be its associated Lie algebra. Given $A \in \mathfrak{g}$ let $\gamma \colon \mathbb{R} \to G$ denote the unique smooth curve with $\gamma(0) = \mathrm{id}$ and $\dot{\gamma}(t) = \gamma(t) \cdot A = A \cdot \gamma(t)$ for all $t \in \mathbb{R}$. Show the following:

- (a) $H := \{ \gamma(t) \mid t \in \mathbb{R} \}$ is an Abelian Lie subgroup of G of dimension 1 or 0.
- (b) Every $X \in \mathfrak{X}^G(G)$ is complete, that is, every integral curve $\gamma \colon (-\epsilon, \epsilon) \to G$ can be extended to an integral curve $\widetilde{\gamma} \colon \mathbb{R} \to G$, with $\dot{\widetilde{\gamma}}(t) = X_{\widetilde{\gamma}(t)}$ for all $t \in \mathbb{R}$.

Exercise 7. Matrix exponentials. Let $\mathbb{k} = \mathbb{R}$ or $\mathbb{k} = \mathbb{C}$.

- (a) Let $A, B \in \operatorname{Mat}_{n \times n}(\mathbb{k})$. Show that if AB = BA, then $\exp(A + B) = \exp(A) \cdot \exp(B)$ holds.
- (b) Give an example of $A, B \in \operatorname{Mat}_{n \times n}(\mathbb{k})$ such that $\exp(A + B) \neq \exp(A) \cdot \exp(B)$.
- (c) Show that for any $A \in \operatorname{Mat}_{n \times n}(\mathbb{k})$ one has that $\det(\exp(A)) = \exp(\operatorname{tr}(A))$. In particular, it follows that $\exp \colon \operatorname{Mat}_{n \times n}(\mathbb{k}) \to \operatorname{GL}_n(\mathbb{k})$.

Exercise 8. Metrics. Let $\langle \cdot, \cdot \rangle$ denote the standard Euclidean metric on $\operatorname{Mat}_{n \times n}(\mathbb{R}) \simeq \mathbb{R}^{n^2}$. Show that the induced metric on $\operatorname{SO}(n)$ is bi-invariant and prove that the 1-parameter subgroups in $\operatorname{SO}(n)$ are geodesics (without using Remark 1.1.10).

Exercise 9. Give a proof of the following proposition.

Proposition 1.1.14. Let \mathfrak{g} denote a finite dimensional Lie algebra over \mathbb{k} .

(1) For every $A \in \mathfrak{g}$, ad_A is a *derivation* on \mathfrak{g} , that is, an endomorphism of \mathfrak{g} such that for all $B, C \in \mathfrak{g}$ we have

$$ad_A([B, C]) = [ad_A(B), C] + [B, ad_A(C)].$$

Moreover, $ad_{[B,C]} = [ad_B, ad_C]$.

(2) The Killing form κ on \mathfrak{g} is a symmetric bilinear form $\kappa \colon \mathfrak{g} \times \mathfrak{g} \to \mathbb{k}$ which obeys

$$\kappa(\operatorname{ad}_A(B), C) = -\kappa(B, \operatorname{ad}_A(C))$$

for all $A, B, C \in \mathfrak{g}$.

Exercise 10. Complexification and real forms. Let \mathfrak{g} be a Lie algebra over a field \mathbb{k} .

- (a) Prove that $[\mathfrak{g},\mathfrak{g}]:=\mathrm{span}_{\Bbbk}\{[X,Y]\mid X,Y\in\mathfrak{g}\}$ is an ideal of $\mathfrak{g}.$
- (b) If $\mathbb{k} = \mathbb{R}$ show that $[\mathfrak{g}^{\mathbb{C}}, \mathfrak{g}^{\mathbb{C}}] \simeq [\mathfrak{g}, \mathfrak{g}]^{\mathbb{C}}$ as Lie algebras, where $V^{\mathbb{C}} := V \otimes_{\mathbb{R}} \mathbb{C}$ denotes the complexification of an \mathbb{R} -vector space V.
- (c) Show that $\mathfrak{sl}_n(\mathbb{R})$ and $\mathfrak{su}(n)$ are both real forms of the complex Lie algebra $\mathfrak{sl}_n(\mathbb{C})$.