Differentialgeometrie II Sommersemester 2021

https://home.mathematik.uni-freiburg.de/mathphys/lehre/SoSe21/DiffGeoII.html

Exercise sheet 12

Exercise 47. Folding the resolution of the A_3 singularity. Let $X_3 \subset \mathbb{A}^3_{\mathbb{C}}$ be the surface singularity of type A_3 with $I(X_3) = \langle x_0^4 - x_1 x_2 \rangle$. Let $C \simeq \mathbb{Z}_2$ be the automorphism group of the Coxeter–Dynkin diagram of type A_3 , folding A_3 to C_2 .

Show that the generator of the C-action on the resolution of X_3 is induced by the map

$$(x_0, x_1, x_2) \mapsto (-x_0, x_2, x_1)$$

Exercise 48. Equivalences of unfoldings. Let $f: (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}, 0)$ denote a holomorphic function germ and recall that two unfoldings $F, \widetilde{F}: (\mathbb{C}^{n+1} \times \mathbb{C}^k, 0) \to (\mathbb{C}, 0)$ of f are equivalent if $\widetilde{F}(z, b) = F(\psi(z, b), b)$ for some holomorphic function germ $\psi: (\mathbb{C}^{n+1} \times \mathbb{C}^k, 0) \to (\mathbb{C}^{n+1}, 0)$ with $\psi(z, 0) = z$.

Show that this notion of equivalence indeed defines an equivalence relation between unfoldings of holomorphic function germs. Does this generalize to the notion of "being induced"?

Exercise 49. Jacobi algebras. Determine a basis of the Jacobi algebra for each of the surface singularities of type A, D, E and observe that for A_r, D_r, E_r the dimension is r in each case.

Exercise 50. A non-simple surface singularity. Let ζ be a primitive third root of unity and let $G = \langle \operatorname{diag}(\zeta, \zeta) \rangle \simeq \mathbb{Z}_3$. Consider the affine algebraic variety

$$X = (\mathbb{C}^2/G, \mathbb{C}[z_1, z_2]^G).$$

- (a) Show that X is isomorphic to an affine algebraic variety in $\mathbb{A}^4_{\mathbb{C}}$ by finding generators and relations for the coordinate ring $\mathbb{C}[z_1, z_2]^G$.
- (b) Show that X has an isolated singularity at 0.