Differentialgeometrie II Sommersemester 2021

https://home.mathematik.uni-freiburg.de/mathphys/lehre/SoSe21/DiffGeoII.html

Exercise sheet 10

Exercise 39. Holomorphic volume forms. Let M be a compact complex manifold with trivial canonical bundle K_M . Show that for any two holomorphic volume forms $\eta, \tilde{\eta}$, there exists some $\lambda \in \mathbb{C}^*$ such that $\eta = \lambda \tilde{\eta}$.

Exercise 40. The A_1 singularity.

- (a) Let $E := \pi^{-1}(0)$ be the exceptional divisor in the resolution $\pi : \widetilde{X}_1 \to X_1$ of the singularity $X_1 \subset \mathbb{A}^3_{\mathbb{C}}$ with $I(X_1) = \langle x_0^2 x_1 x_2 \rangle \subset \mathbb{C}[x_0, x_1, x_2]$ as in Example 2.1.13. Prove that $E \simeq \mathbb{CP}^1$.
- (b) Show that the section of $K_{\widetilde{X}_1}$ constructed chart by chart in Example 2.1.13 descends from a multiple of $dz_1 \wedge dz_2$ on \mathbb{C}^2 when viewing X_1 as the quotient singularity $X_1 \simeq \mathbb{C}^2/\mathbb{Z}_2$ as in Example 2.1.6.

Exercise 41. Resolution of submanifolds. Let $U \subset \mathbb{C}^N$ be an *n*-dimensional complex submanifold of \mathbb{C}^N .

(a) Let $P \subset U$ be a submanifold of U. Show that the construction of the resolution of U along P given in Definition 2.1.14 (1) is independent of the choice of adapted coordinates.

This allows us to define $\sigma: \widetilde{U} \to U$ a resolution of U along P, where $\widetilde{U}_V = \sigma^{-1}(V)$ for all open coordinate neighbourhoods $V \subset U$ yield a holomorphic atlas for \widetilde{U} . Calculate $\sigma^{-1}(z)$ for any $z \in U$.

(b) Let

- $f \in \mathbb{C}[z_1, \ldots, z^N] \setminus \{0\}$
- $X = \{z \in U \mid f(z) = 0\}$
- $p \in X$ and
- \widetilde{X} the blow-up of X in p as in Definition 2.1.14 (2).

Prove that \widetilde{X} is isomorphic to the resolution of X in p if $X \subset U \subset \mathbb{C}^N$ is a smooth submanifold.

Exercise 42. Du Val singularities. Prove that the exceptional divisors of the resolutions of any one of the types A_n , D_n , E_6 , E_7 , E_8 of the du Val singularities arise under repeated blow-ups, yielding the picture on the following page. Show that these resolutions are crepant.

