Übungsaufgaben zur Linearen Algebra II

Blatt 1

Abgabetermin: Do, 12.05.2011, 8:00 Uhr

Aufgabe 1-1:

Sei $f:\mathbb{R}^3 \to \mathbb{R}^3$ die lineare Abbildung, die in der Standardbasis durch die Matrix

$$\begin{pmatrix} -14 & 37 & -23 \\ -8 & 20 & -10 \\ -2 & 4 & 1 \end{pmatrix}$$

gegeben ist.

a) Berechnen Sie die Matrix $Mat_B^B(f)$ bezüglich der Basis

$$B = \left\{ \begin{pmatrix} 11\\6\\2 \end{pmatrix}, \begin{pmatrix} 8\\5\\2 \end{pmatrix}, \begin{pmatrix} 3\\2\\1 \end{pmatrix} \right\}.$$

Hinweis: Folgende Gleichung dürfen Sie verwenden:

$$\begin{pmatrix} 11 & 8 & 3 \\ 6 & 5 & 2 \\ 2 & 2 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -2 & 1 \\ -2 & 5 & -4 \\ 2 & -6 & 7 \end{pmatrix}.$$

b) Geben Sie Basen B_1 und B_2 des \mathbb{R}^3 an, so dass $Mat_{B_2}^{B_1}(f)$ die Einheitsmatrix ist. Zeigen Sie weiter, dass für jedes Paar (B_1, B_2) mit dieser Eigenschaft $B_1 \neq B_2$ gilt.

Aufgabe 1-2:

a) Berechnen Sie die Determinante und die Eigenwerte der Telefonmatrix

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}.$$

b) Berechnen Sie die Eigenwerte der folgenden oberen $(n \times n)$ -Dreiecksmatrix und geben Sie einen Eigenvektor zu einem Eigenwert Ihrer Wahl an:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix}.$$

Aufgabe 1-3:

Sei \mathbb{K} ein Körper und V ein endlich dimensionaler \mathbb{K} -Vektorraum. Weiter sei $\lambda_i \in \mathbb{K}$ für $i \in \{1,2\}$ ein Eigenwert der \mathbb{K} -linearen Abbildung $f_i : V \to V$. Beweisen oder widerlegen Sie folgende Aussagen:

- a) Dann ist $\lambda_1 + \lambda_2$ ein Eigenwert von $f_1 + f_2 : V \to V$.
- b) Dann ist $\lambda_2 \cdot \lambda_1$ ein Eigenwert von $f_1 \circ f_2 : V \to V$.
- c) Die Abbildungen $f_1 \circ f_2$ und $f_2 \circ f_1$ haben dieselben Eigenwerte.

Aufgabe 1-4:

- a) Sei V ein endlich dimensionaler \mathbb{K} -Vektorraum. Ein Endomorphismus $f:V\to V$ heißt nilpotent, wenn ein $m\in\mathbb{N}$ existiert, so dass $f^m=0$ ist. Zeigen Sie, dass der einzige Eigenwert eines nilpotenten Endomorphismus gleich 0 ist.
- b) Sei V ein n-dimensionaler \mathbb{K} -Vektorraum und W ein m-dimensionaler \mathbb{K} -Vektorraum mit $n < m < \infty$. Weiter seien lineare Abbildungen $f: V \to W$ und $g: W \to V$ gegeben. Bestimmen Sie einen Eigenwert von $f \circ g: W \to W$.