Übungsblatt 05

Funktionentheorie, Sommersemester 2010

Woche: 24. Mai – 28. Mai 2010 Abgabe: spätestens Freitag, 21. Mai 2010, 10:00 Uhr in die Box "Funktionentheorie" im Gebäude L1

Aufgabe 1 Verwenden Sie die Cauchysche Integralformel um folgende Wegintegrale zu berechnen. Es sei $B_r(z_0) = \{z \in \mathbb{C} \mid |z - z_0| \leq r\}$. (Die Standardorientierung für das Wegintegral entlang von $\partial B_r(z_0)$ sei im Gegenuhrzeigersinn, $\gamma: [0, 2\pi] \to \mathbb{C}, t \mapsto re^{it}$.)

1. Für alle $r > 0, r \notin \{1, 2\}$:

$$\int_{\partial B_r(0)} \frac{2z-1}{z(z-1)(z-2)} dz$$

2. Die Logarithmusfunktion sei definiert durch das Standardinterval $\arg(z) \in (-\pi,\pi]$. Bestimmen Sie

$$\int_{\partial B_1(2)} \frac{\log z}{z - e} dz,$$

wobei e die Eulerzahl ist.

3. Für alle $r > 0, r \neq \pi$:

$$\int_{\partial B_r(i\pi/2)} \frac{e^z}{z^2 + \pi^2/4} dz.$$

Aufgabe 2 Zeigen Sie, dass jede holomorphe Abbildung von \mathbb{C} in die obere Halbebene $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im} z > 0\}$ konstant sein muss.

Aufgabe 3

- 1. Sei γ ein geschlossener Weg in \mathbb{C}^{\times} und $g(z)=z^n$ mit $n\in\mathbb{Z}$. Zeigen Sie $\mathrm{Uml}(g\circ\gamma,0)=n\;\mathrm{Uml}(\gamma,0)$.
- 2. Es sei p(z) ein Polynom mit n-facher Nullstelle im Ursprung, n>0. Es sei γ ein Weg in $\mathbb C$, der keine der Nullstellen kreuzt und dessen Umlaufzahlen für alle Nullstellen von p(z) außer dem Ursprung verschwinden. Drücken Sie die Umlaufzahl Uml $(p\circ\gamma,0)$ durch Uml $(\gamma,0)$ aus.
- 3. Es sei $p(z) = (z a_1) \dots (z a_n)$ mit $a_i \neq a_j$ für $i \neq j$ und $n \in \mathbb{N}$, d.h. a_1, \dots, a_n sind die einfachen Nullstellen des Polynoms p(z) vom Grad n. γ sei ein Weg in \mathbb{C} , der keine Nullstelle kreuzt. Zeigen Sie, dass

$$\mathrm{Uml}(p \circ \gamma, 0) = \mathrm{Uml}(\gamma, a_1) + \ldots + \mathrm{Uml}(\gamma, a_n).$$

6