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Introduction

In 1864 E.E.Kummer wrote [2] about an interesting quadric surface which
has 16 singularities. Now any such surface is called a Kummer surface, and
with the singularities blown up it is often used as a tool to visualise K3
surfaces. It is even possible to build a model of a Kummer surface.

In [1] a correspondence was shown between Kummer surfaces embedded
in P

3 and certain non-degenerate (16, 6) configurations. This is explained in
section 2 where I state this theorem and outline a proof. But one point in the
proof was the classification of non-degenerate (16, 6) configurations (section
1), what intrigued me here were the two so called ’exotic’ configurations, that
couldn’t live in P

3.

Sections 3 and 4 both deal with the understanding of the symmetry group
of all the non-degenerate (16, 6) configurations.

Section 3 defines a symmetry of a (16, 6) configuration and then looks at
the symmetries that fix a given plane. The approach used here is through a
view taken from the fixed plane.

Section 4 takes a different approach, using the matrix definition of the
(16, 6) configurations. This is another interesting way to look at symmetries.
I use it to explore symmetries that fix no points or planes.

As a result I can argue that the exotic (16,6) configurations cannot cor-
respond to Kummer surfaces at all.
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1 Abstract (16,6) Configurations

My first aim in this section is to introduce the concept of (16, 6) configurations
both abstractly and geometrically. Then I give a general construction to
enable a (16, 6) configuration to be pictured as a collection of 10 cones over
a chosen plane. The main part of this section presents a result from [1]:

Non-degenerate abstract (16, 6) configurations are classified into three
types. Type (*) will be shown to correspond to Kummer surfaces in P

3 (See
section 2). Type A, and type B configurations will be called exotic.

Trying to understand the exotic cases has been the main motivation of
my work.

1.1 Preliminaries

For the following definitions the main configuration to bear in mind is the
(16, 6) configuration but I also use (4, 3), (8, 4) and other configurations.
Hence I state the definitions in general.

Definition 1.1 An abstract (a, b) configuration is an a × a matrix with el-
ements in F2 = {0, 1} such that each row and each column has exactly b
ones.

However large matrices over F2 are not the most intuitive objects. So we
can define a geometric (a, b) configuration as follows:

Definition 1.2 A geometric (a, b) configuration is a collection of a points
and a planes such that b points lie on each plane and b planes intersect at
each point.

We want to be be able to relate abstract and geometric configurations
uniquely and for this we need to choose a convention. I define an incidence
diagram as follows:
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Definition 1.3 A matrix (αij)1≤i≤n, 1≤j≤m with αij ∈ F2 is considered an
incidence diagram of n planes Hi and m points Pi: We associate a row to
each plane and a column to each point, such that a point Pj lies on a plane
Hi if and only if αij = 1.

This gives us immediately the desired result:

Remark 1.4 Every abstract (a, b) configuration immediately defines a ge-
ometric (a, b) configuration, by considering the matrix to be an incidence
diagram of abstract points and planes.

For some special geometric (a, b) configurations we can associate a no-
tion of non-degeneracy. Examples are (4, 3) and (16, 6) which allow non-
degeneracy whereas (8, 4) does not. In general (a, b) can be non-degenerate

if a = Cb
2 + 1 = b(b−1)

2
+ 1. The (16, 6) configuration is particularly inter-

esting since it is the smallest configuration having both non-degenerate and
degenerate configurations.

Definition 1.5 A geometrical (a, b) configuration is said non-degenerate if
every pair of points or planes defines a unique line.

1.2 The key tools

All pairs of planes intersect in a line containing exactly 2 points. Given a
plane H the other 15 planes each define a unique line on H joining 2 of the 6
points lying on H, Figure 1.

Also any given point P not on H lies on 6 other planes and so defines a
collection of 6 lines on H. Any given point on H and P both lie on exactly 2
planes and since P is not in H these two planes correspond to two lines on
H. It follows that either the collection of 6 planes form a single cone(type 2)
or they split into 2 cones of 3(type 1). Figure 2 illustrates an example of the
intersection of the cones of type 1 and 2 with H.
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Figure 1: On any given plane H of a non-degenerate (16,6) configuration each of
the other 15 planes corresponds to exactly one line of this picture.

Type 1 Type 2

Figure 2: These diagrams illustrate how the cones of six planes, defined by a point
not on H, could intersect H. The structure is not changed by interchang-
ing points even though the picture could be.

Remark 1.6 Given a point a on H there is a bijection between pairs of points
on H and points not on H.

Proof. a,b and a,c define lines on H which are planes in the (16,6) configura-
tion. These planes intersect in a line which contains 2 points, one of which is
a. Since the line does not lie in H neither does the second point d. Similarly
given any point d outside H the line joining it to a comes from 2 planes
which define 2 lines on H each containing a and one other point on H. Call
these points b and c. These constructions are unique since no three planes
intersect in a line and no three points lie on a line. Q.E.D

Remark 1.7 There is a bijection between pairs of points not in H and pairs
of lines in H.

Proof. This corresponds exactly to the non-degeneracy condition since any
two points lie on the intersection of 2 planes. Since the points are not in H
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neither plane can be H so they both intersect H in a line. Similarly 2 lines
define 2 planes which defines 2 points. Q.E.D

1.3 Classification

Theorem 1.8 There are exactly 3 non-isomorphic non-degenerate abstract
(16, 6) configurations.

I approach the proof in two parts. Choose a special plane H. In part one
of the proof I show that there are exactly 3 non-isomorphic configurations
of the other 10 points and 15 planes which are (16, 6) non-degenerate. To
complete the proof all that is needed is to show that the configuration is
independent of the choice of initial plane H. I only give the main ideas here.

Proof of part one. A configuration (called of type (*)) consisting solely of
type 1 cones satisfies remarks 1.6 and 1.7. This can be checked immediately
from figure 3.
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Figure 3: A configuration containing only triangles.

Now assume that a configuration has at least one cone of type 2. Without
loss of generality consider point 7 to have the cone (1 2 3 4 5 6) where this
means it contains the lines (12), (23), (34), (45), (56), (16). Now from remark
1.6, choosing base point 1, there is a bijection between pairs of points on H
not equal to 1 and points not on H. We know that (2, 6) maps to 7 so let
(2, 3) map to 8, (2, 4) to 9 and (2, 5) to 10. This puts us in the position
shown in figure 4.
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Figure 4: Step one in the building of a configuration with at least 1 cone of type
2.

Already some restrictions become apparent. Point 8 has to have a cone
of type 2 since if it was of type 1 it would have 4 lines and hence planes in
common with point 7. This contradicts non-degeneracy (see remark 1.7).

If point 9 has a cone of type 1 it must be (1 2 4)(3 5 6) and if it were a cone
of type 2, we can eliminate all possibilities other than (1 2 6 3 5 4). Simply
checking the other cycles of the form (1 2 * * * 4) shows they all contradict
remark 1.7.

Similarly if point 10 has a cone of type 1 it must be (1 2 5)(3 4 6) and if
it were a cone of type 2 it is (1 2 6 4 3 5).

This gives us 4 cases as shown in figure 5. I have completed the cone for
point 8 in cases 1,2 and 3 since it has become uniquely determined.

Case 4 corresponds to all 4 points being cones of type 2. This is invalid1

since the cones in points 9 and 10 intersect in 3 lines.

Cases 2 and 3 are equivalent since we can get from one to the other by
applying the following permutation (1 2)(3 6)(4 5)(8 9 10).

It is now possible to complete the proof directly by checking the remaining
points directly and remarking that up to some permutation of points there
are only two different configurations with a case 2 cone. [1] does this leaving
some of the routine checking to the reader.

1A configuration is invalid if it contradicts either the (16, 6) configuration or the non-
degeneracy assumption. Invalidity also follows directly if 1.6 or 1.7 don’t hold and these
are often the easiest things to look for.
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Figure 5: Step two: A configuration with at least 1 cone of type 2 has been shown
to be one of these four cases. It is easy to see that case 4 is invalid and
case 2 is equivalent to case 3.
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Although that does complete the proof, a more useful exercise is to com-
plete the proof by elimination after repeating the same argument.

The three points 8,9, and 10 were chosen so that they all lie on the plane
H1,2 intersecting H in the line 12. Since 7 also intersects H in 1 and 2 the
plane H1,2 contains the 6 points 1,2,7,8,9,10.

What we showed earlier was that there are exactly 2 ways to extend
the points 1,2,3,4,5,6,7 by 3 new points without contradiction to the (16, 6)
configuration. It is useful to distinguish between cases 2 and 3 and think of
them as being related.

In all cases the points 8,9,10 do not lie on the plane H2,3. So three new
points 11,12,13 can be defined in exactly the same way simply by rotating
the diagrams by 2π

6
.

Recall we had the 3 valid cases for the 10 points 2 of which were equivalent.
We now have 9 cases (since order does not matter) for 13 points and need to
check validity and equivalence. I will not go into the details here since they
are easy to do using the above methods.

• Case 1 × 1 is valid.

• Cases 1 × 2, 2 × 1, 1 × 3 and 3 × 1 are all valid and equivalent.

• Cases 2 × 2 and 3 × 3 are invalid, the easiest way to see this is to look
in figure 5 at the points 6, 9, and 112 all three lie on both H3,6 and H5,6

for case 2× 2. Consider the points 6, 9, and 13 to invalidate case 3× 3.

• Cases 2 × 3 and 3 × 2 are valid and equivalent.

Each of the above valid cases have a unique completion. And they split
into two types A and B (to use [1]’s notation). Type A is the first case in
the list (figure 6) and type B encompasses the other 6 valid cases which are
all equivalent (figure 7). Q.E.D

2the point 11 has cone defined by the cone of 8 rotated in the diagram by 2π

6
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Figure 6: A configuration of type A.
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Figure 7: A configuration of type B.

Before I comment on part two of the proof I will state the following
definition.

Definition 1.9 A Rosenhain tetrahedron in a (16, 6) configuration is a (4, 3)
sub-configuration.

Idea and key steps for the proof of part 2. The idea of the proof is to show
that the number of Rosenhain tetrahedra in a (16, 6) configuration is 8n
where n is the number of points having cones of type 1 with respect to a
chosen plane H. This then means that n is independent of the choice of H.
This would complete the proof.

The first key step is to show that every Rosenhain tetrahedron intersects
a plane in either a point or a face (i.e. not an edge or an empty intersection).

It is obvious that H intersects 2n Rosenhain tetrahedra in a face.

All that’s left is to show that H intersects 6n Rosenhain tetrahedra in a
point. This comes directly from a very interesting bijection between Rosen-
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hain tetrahedra and each pair of a point α on H and a point β not on H that
defines a cone of type 1.

I find this bijection visually very interesting since given the pair of points
we get a plane H ′ which corresponds to the line in the triangle containing α
with α /∈ H ′. H ′ defines 3 points which are not in H and not β, these points
and α define a Rosenhain tetrahedron. All this is saying is that the cone
defined by H ′ and α is of type 1 which is obvious. But I find it visually very
nice. Q.E.D
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2 (16,6) Configurations in P
3

In this section I outline the main results related to the embedding of (16,6)
configurations into P

3 from [1]. I do not go through the proofs but present
the key ideas in a manner which will prepare the next section.

(8, 4) configurations are mentioned in 2.2 since they are the key tool in
proving that type (*) configurations embed into P

3 and also that the exotic
configurations don’t. They are also a key concept used in section 4.

The study of symmetries starts in subsection 2.3. Subsection 2.4 is an
aside to the rest of the project but I like it, so I wanted to mention it.

2.1 Statement of Theorems

I follow the convention used in [1] to define a Kummer surface as a singular
surface, as opposed to considering the surface after the singularities have been
blown up, which would make it a K3 surface. This choice is justified since
the (16, 6) configuration can be considered as a model for the singularities of
a Kummer surface.

Definition 2.1 A Kummer surface in P
3 is a reduced, irreducible surface of

degree 4 having 16 nodes and no other singularities.

The aim of this section is to prove the following result:

Theorem 2.2 The non-degenerate (16, 6) configurations that embed into P
3

are of type (*), form a 3-dimensional family and all correspond to a Kummer
surface which is embedded in P

3. Similarly every Kummer surface embedded
in P

3 has an associated type (*) configuration.

The following steps are used to prove this result:
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• A standard (8, 4) configuration embedded into P
3 plus 2 special points

uniquely generates a non-degenerate (16, 6) configuration of type (*) in
P

3.

• Every non-degenerate (16, 6) configuration contains a sub-structure
equivalent to a standard (8, 4) configuration plus 2 special points. So
when embedded into P

3 we get a contradiction if the configuration is
not of type (*).

• The points of a non-degenerate (16, 6) configuration of type (*) in P
3

can be generated from a single point (a,b,c,d) in general position3 under
the action of a group which I call F0

∼= Z
4
2.

• The moduli space of non-degenerate (16, 6) configurations of type (*)
in P

3 is the quotient of an open subset of P
3 by a finite group.

• Kummer surfaces in P
3 define a unique non-degenerate (16, 6) configu-

ration of type (*) and vice versa.

The main ideas concerning (8, 4) configurations and the group F0 are
introduced below since they relate both to some steps of the proof and to
other work presented later.

2.2 (8, 4) Configurations

Recall definitions 1.1 and 1.2 of an (a, b) configuration.

Definition 2.3 A standard abstract (8, 4) configuration is an abstract (8, 4)
configuration that can be written, using row and column permutations, as the

3The list of conditions stated at the end of 2.4 also correspond to the conditions on the
point (a,b,c,d) that guaranty that F0 generates 16 distinct points from it.
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following matrix:
























0 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 1
1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

























Remark 2.4 A nice way to understand this definition of a standard (8,4)
configuration is that we are simply attaching 2 Rosenhain tetrahedra together
in a standard symmetrical way. Drawing the picture is tricky since this lives
naturally in P

3 but numbering the vertices and faces of 2 tetrahedra and
seeing how they could fit together in a projective space is a good exercise in
visualisation.

Or alternatively consider 2 planes to be ’parallel’ if they don’t intersect
in at least one point. Then a standard (8, 4) configuration is made up of 4
pairs of ’parallel’ planes and can be visualised as a pair of ’parallel’ planes
each containing 4 points.

Remark 2.5 Every non-degenerate (16, 6) configuration contains a standard
(8, 4) sub-configuration. And moreover it can always be split into two stan-
dard (8, 4) configurations glued together by two (8, 2) configurations.

These ideas will be developed further and used in section 4. I will mention
the proof of this remark later. It is obvious by inspection of the three matrices
presented in section 4.

2.3 Symmetries in P
3

Let F0 ⊆ PGL(4) be the group of symmetries in P
3 defined by changing

signs of any 2 coordinates or interchanging any two pairs of coordinates. This
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group of symmetries is enough to generate a type (*) (16, 6) configuration
from a single point.

For readers familiar with the concept of abelian surfaces: It is known
that every Kummer surface allows a 2:1 cover by an abelian surface, with
branch locus given by the 16 nodes on the Kummer surface. The F0 action
is induced by half-period shifts on the abelian surface.

In section 3 and 4 I will explore the entire symmetry groups of the three
non-degenerate configurations.

2.4 General equation of a Kummer surface in P
3

This is a complete aside to the aims of my project but I mention it briefly
because of its history. In [2] Kummer first wrote down an equation of what is
now know as a Kummer surface, and the following equation was first known
by [3]. Through this defining equation, using nothing but long calculations,
[1] showed that any type (*) configuration is the associated (16, 6) configu-
ration for some Kummer surface.

The defining equation of a Kummer surface mapped to itself under the
F0 action defined in 2.3 can be written as:

f = x4+y4+z4+t4+2Dxyzt+A(x2t2+y2z2)+B(y2t2+x2z2)+C(x2y2+t2z2)

for appropriate choices of A,B,C,D that depend only on the coordinates
(a, b, c, d) ∈ P

3 of one node such that the coordinates satisfy the following
conditions.

ad 6= ±bc,

ac 6= ±bd,

ab 6= ±cd,

a2 + d2 6= b2 + c2,

a2 + c2 6= b2 + d2,

a2 + b2 6= c2 + d2,

a2 + b2 + c2 + d2 6= 0.
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3 Symmetries of a (16,6) configuration

In this section I explore the abstract symmetries of a (16, 6) configuration
that fix a given plane. The symmetry group of the type (*) configuration
embedded in P

3 was described in [1]. From the main result in the previous
section the symmetry group of a configuration is independent of its embed-
ding into P

3.

I set up a method of finding abstract symmetries that fix a given plane.
Then I apply it to all three configurations determining their symmetry groups
that fix a plane.

In section 4 I will remove the condition that a given plane should be fixed,
and, using a matrix argument, discuss the whole symmetry groups.

3.1 Preliminaries

I introduce the concept of an abstract symmetry of a (16, 6) configuration as
follows:

Concept Let C be a non-degenerate abstract (16, 6) configuration, and
define I := {1, 2, . . . , 16}. Then consider C as a non-degenerate geometric
(16, 6) configuration with points Pi ∀i ∈ I, and the associated planes Hn ∀n ∈
I can be considered as sets of 6 points i.e. Hn := {Pi|cni = 1}.

We can define the ’Symmetry Group’:

S16 ⊃ HC := {σ ∈ S16|∀ i ∈ I ∃j ∈ I s.t. Hj = {σ(Pk)|Pk ∈ Hi}}

Note From the definition of a symmetry we automatically have that Rosen-
hain tetrahedra are mapped to Rosenhain tetrahedra.

Proof. For a non-degenerate (16, 6) configuration, a Rosenhain tetrahedron
is uniquely determined by 4 points since 3 points uniquely determine a plane.
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Hence the result follows directly from the definition of the ’Symmetry Group’.

Q.E.D

There is a natural splitting of the symmetries into those preserving a
fixed plane and those that don’t. This is a sensible splitting since all planes
have the same structure (see the second part of the proof of theorem 1.8).
This section explores the symmetries that fix a plane and the next section
explores those that do not.

I now repeat the construction used in chapter one in this new context.

Assume that under a symmetry σ a plane H is fixed and it contains
the points P1, . . . , P6 (numbered 1 to 6 on the diagrams). Each other plane
intersects H in one line defined by 2 points so we can denote the 15 other
planes Hi,j with i and j in {1, . . . , 6}. Any point not on H defines 6 planes
and from the non-degeneracy we get a cone which intersects H in either a
hexagon or 2 triangles with vertices P1, . . . , P6.

Any symmetry fixing H will take the set of points {P1, . . . , P6} to itself
since they lie on and define H. It follows trivially from non-degeneracy that
the symmetry group fixing H is a subgroup of S6. I will determine it in all
three specific cases.

3.2 Symmetries of type (*) Configurations

A type (*) configuration can be represented by figure 8, and using the above
mentioned construction we can use this figure to see the abstract symmetries,
fixing H. What I mean by this is that any permutation of the sixteen points
that is a symmetry of the (16, 6) configuration preserving H will preserve
the diagram. And similarly any permutation that preserves the diagram is a
symmetry of the (16, 6) configuration preserving H.

I now go through one way of finding and checking an element of the sym-
metry group. Readers who wish to omit this detail, could skip to Statement
3.1.
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Figure 8: The cones of a type (*) configuration intersecting a fixed plane H.

Using the diagram it is trivial to see that the permutation that is the
identity on {P1, . . . , P6} is the identity everywhere. This follows directly
from the cones of the 10 other points being different, which is itself a direct
consequence of non-degeneracy.

Given the transposition (P1 P2) in the group S6 of the points {P1, . . . , P6},
can it be extended to a symmetry σ of the (16, 6) configuration? I follow this
example through in detail to illustrate a method to find a valid symmetry of
the (16, 6) configuration preserving H.

It is useful to note that σ(Hi,j) = Hσ(i),σ(j) when H is fixed under σ. This
follows directly from the bijective correspondence between pairs of points on
H and planes other than H. It follows that σ(H1,i) = H2,i and σ(H2,i) = H1,i

for every i in {3, . . . , 6}, and that every other plane is fixed under σ.

In this case it is now easy to check directly what σ(Pi) is for all i by using
figure 8 and what happens to each plane. However a more general method
can be used when we have less information.

We can determine what the 6 points lying on H1,3 are. P1 and P3 obviously
lie on H1,3. The other four can be found using figure 8 to identify the points
in {P7, . . . , P16} whose cone contains the plane H1,3. That is P8, P10, P12 and
P16.

If σ is a symmetry of the (16,6) configuration the image of the points of
H1,3 under σ must be the points of σ(H1,3) = H2,3. These are P2, P3, P8,
P9, P11, and P14. We know that σ(P1) = P2 and σ(P3) = P3. So we get
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σ({P8, P10, P12, P16}) = {P8, P9, P11, P14}. Using σ(H2,3) = H1,3 in the same
way we get σ({P8, P9, P11, P14}) = {P8, P10, P12, P16}. From these two we
know that σ(P8) = P8 otherwise we would get a contradiction.

Using the the same method for any plane which is not fixed we get:

• σ(H1,4) = H2,4 gives σ({P11, P12, P14, P15}) = {P9, P10, P15, P16}

• σ(H2,4) = H1,4 gives σ({P9, P10, P15, P16}) = {P11, P12, P14, P15}

• σ(H1,5) = H2,5 gives σ({P9, P10, P13, P14}) = {P11, P12, P13, P16}

• σ(H2,5) = H1,5 gives σ({P11, P12, P13, P16}) = {P9, P10, P13, P14}

• σ(H1,6) = H2,6 gives σ({P7, P9, P11, P16}) = {P7, P10, P12, P14}

• σ(H2,6) = H1,6 gives σ({P7, P10, P12, P14}) = {P7, P9, P11, P16}

Hence σ(P10) = P11 since any other value would produce a contradiction.
Similarly we get: σ(P7) = P7, σ(P9) = P12, σ(P11) = P10, σ(P12) = P9,
σ(P13) = P13, σ(P14) = P16, σ(P15) = P15, σ(P16) = P14. This completes the
definition of σ.

To check that no contradictions occur here are the conditions imposed by
the planes fixed by σ:

• σ(H3,4) = H3,4 gives σ({P7, P9, P12, P13}) = {P7, P9, P12, P13}

• σ(H3,5) = H3,5 gives σ({P7, P10, P11, P15}) = {P7, P10, P11, P15}

• σ(H3,6) = H3,6 gives σ({P13, P14, P15, P16}) = {P13, P14, P15, P16}

• σ(H4,5) = H4,5 gives σ({P7, P8, P14, P16}) = {P7, P8, P14, P16}

• σ(H4,6) = H4,6 gives σ({P8, P10, P11, P13}) = {P8, P10, P11, P13}

• σ(H5,6) = H5,6 gives σ({P8, P9, P12, P15}) = {P8, P9, P12, P15}
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In disjoint cyclic notation σ = (P1 P2)(P9 P12)(P10 P11)(P14 P16) with
respect to points and σ = (H1,3 H2,3)(H1,4 H2,4)(H1,5 H2,5)(H1,6 H2,6) with
respect to planes. From now on I just state the disjoint cyclic notation,
validity can be checked from the figure 8.

One last comment on this method is that it can also be used when very
little information about a symmetry is known. Hence it is a very useful
exploratory tool. It was particularly useful when adapted to explore sym-
metries that do not preserve H, but the matrix manipulation presented in
section 4 requires considerably less calculations, and gives more insight.

We can similarly check that the following transpositions in S6 give the
following valid symmetries of the (16,6) configuration fixing H. I see no gain
for a reader to follow the previous method with these examples. However it
is a good exercise in visualising the sixteen to check using figure 8 that these
symmetries are valid.

• (P1 P3) ∈ S6 generates a symmetry which acts on points and planes
by:

(P1 P3)(P7 P14)(P9 P15)(P11 P13)(H1,2 H2,3)

◦(H1,4 H3,4)(H1,5 H3,5)(H1,6 H3,6)

• (P1 P4) ∈ S6 generates a symmetry which acts on points and planes
by:

(P1 P4)(P7 P10)(P8 P9)(P13 P16)(H1,2 H2,4)

◦(H1,3 H3,4)(H1,5 H4,5)(H1,6 H4,6)

• (P1 P5) ∈ S6 generates a symmetry which acts on points and planes
by:

(P1 P5)(P7 P12)(P8 P11)(P15 P16)(H1,2 H2,5)

◦(H1,3 H3,5)(H1,4 H4,5)(H1,6 H5,6)

• (P1 P6) ∈ S6 generates a symmetry which acts on points and planes
by:

(P1 P6)(P8 P14)(P10 P15)(P12 P13)(H1,2 H2,6)

◦(H1,3 H3,6)(H1,4 H4,6)(H1,5 H5,6)
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Since span({(P1 P2), (P1 P3), (P1 P4), (P1 P5), (P1 P5)}) is isomorphic to
S6 and we noted above that the ’symmetry group’ preserving H of every
configuration is contained in S6, we have proved the following statement.

Statement 3.1 The group of symmetries that preserve a given plane H of
a non-degenerate (16,6) configuration of type (*) is isomorphic to S6.

This result was found by [1] but the symmetries were not found explicitly.
They were simply counted. Using the same methods as for the type (*)
configuration we can now look at both exotic configurations.

3.3 Symmetries of type A Configurations

The same reasoning holds to show that the group of symmetries that fix H
is isomorphic to a subgroup of S6. To see this we need to check that no
two points have the same cone in figure 9; we know this to be the case from
non-degeneracy. I now present a set of elements that generate the relevant
subgroup of S6. Then I state what the subgroup is and give a separate
explanation of its origin.
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Figure 9: The cones of a type A configuration intersecting a fixed plane H.

I do not go through all the details of the exploration. To see that the set
of symmetries is strictly smaller than S6, note that a symmetry swapping P1

with P2 and fixing the points P3, P4, P5, and P6 takes the cone of the point
7 to a cone that does not belong to the configuration. Hence this is invalid.
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It becomes valid when composed with the symmetry swapping P4 with P5.
In this way we get the following symmetries in disjoint cyclic notation acting
on points, the action on planes follows trivially:

• (P1 P4)(P7 P10)(P8 P9)(P13 P16)

• (P2 P5)(P7 P9)(P8 P10)(P14 P15)

• (P3 P6)(P7 P8)(P9 P10)(P11 P12)

• (P1 P2)(P4 P5)(P7 P8)(P11 P12)(P13 P15)(P14 P16)

• (P1 P5)(P2 P4)(P9 P10)(P11 P12)(P13 P14)(P15 P16)

• (P1 P3)(P4 P6)(P8 P10)(P11 P13)(P12 P16)(P14 P15)

• (P1 P6)(P3 P4)(P7 P9)(P11 P16)(P12 P13)(P14 P15)

• (P2 P3)(P5 P6)(P7 P10)(P11 P14)(P12 P15)(P13 P16)

• (P2 P6)(P3 P5)(P8 P9)(P11 P15)(P12 P14)(P13 P16)

It is easy to check that any symmetry not generated by these is invalid,
using the figure 9.

There is a Z2 subgroup which is defined by the involution σ which is the
composition of the first three symmetries above;

σ := (P1 P4)(P2 P5)(P3 P6)(P11 P12)(P14 P15)(P13 P16)

Moreover, there is an S4 subgroup generated by the last six symmetries
above. This can be seen as an S4 action on the points {P7, P8, P9, P10}. One
checks that these Z2 and S4 type subgroups commute, implying the following
statement:

Statement 3.2 The group of symmetries that fix H of a non-degenerate
(16, 6) configuration of type A is isomorphic to Z2 × S4.
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3.4 Symmetries of type B Configurations

This case could be understood in the same way as the previous two by direct
calculation but the following description gives more insight into the nature
of this configuration. We note from figure 10 that, as in the previous cases,
we are looking at a subgroup of S6.
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Figure 10: The cones of a type B configuration intersecting a fixed plane H.

Using the fact that tetrahedra get mapped onto tetrahedra by symmetries
of a (16,6) configuration we get that for a symmetry fixing H the set of points
{P13, P14, P15, P16} must be mapped to itself, and they all lie on H3,6 so this
plane must also be preserved by the action. We know that the ’symmetry
group’ is a subgroup of S6 on the points {P1, P2, P3, P4, P5, P6} and it follows
from the invariance of H3,6 that we are now looking for a subgroup of Z2×S4.
Namely the two distinct actions: Z2 corresponds to the permutations of the
points {P3, P6}, and S4 gives the permutations of {P1, P2, P4, P5}. In the S4

action we are looking at the symmetries of a standard (8, 4) configuration
fixing a plane. I will mention this again below and explain it in section 4.

Actually we don’t have the full S4 action on the points {P1, P2, P4, P5},
we have the action of even permutations A4. This restriction comes from the
way the second standard (8, 4) configuration interacts with the first. I will
go into much more detail in section 4.

The other way to read off the symmetry group is to check directly. I will
write down the generators for this case to help with the overall picture, these
can be used to check that the description of the group is accurate.
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• (P3 P6)(P7 P8)(P9 P10)(P11 P12)

• (P1 P4)(P2 P5)(P7 P8)(P11 P12)(P13 P16)(P14 P15)

• (P1 P2)(P4 P5)(P7 P8)(P9 P10)(P13 P15)(P14 P16)

• (P1 P5)(P2 P4)(P9 P10)(P11 P12)(P13 P14)(P15 P16)

• (P1 P2 P4)(P7 P10 P12)(P8 P9 P11)(P13 P16 P14)

• (P1 P4 P2)(P7 P12 P10)(P8 P11 P9)(P13 P14 P16)

• (P1 P2 P5)(P7 P11 P10)(P8 P12 P9)(P14 P15 P16)

• (P1 P5 P2)(P7 P10 P11)(P8 P9 P12)(P14 P16 P15)

• (P1 P4 P5)(P7 P9 P12)(P8 P10 P11)(P13 P15 P16)

• (P1 P5 P4)(P7 P12 P9)(P8 P11 P10)(P13 P16 P15)

• (P2 P4 P5)(P7 P11 P9)(P8 P12 P10)(P13 P15 P14)

• (P2 P5 P4)(P7 P9 P11)(P8 P10 P12)(P13 P14 P15)

Given the necessary checks the following statement can be proved.

Statement 3.3 The group of symmetries of a non-degenerate (16, 6) config-
uration of type B that fix H is isomorphic to Z2 × A4.
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4 Matrix representation of a (16,6) configu-

ration

In this section I present ideas on the matrix representation, then go back to
exploring symmetries of the (16, 6) configuration. Through the matrix de-
scription of the configurations I find a set of generators of the entire symmetry
groups for each configuration.

In the end of this section I provide visual aids for each of the three types
of configurations. By this I mean a geometrical representation as we have
used previously and a corresponding matrix. The three matrices appear to
be very similar. These are intended as tools to understanding the schematic
proofs. To keep the flow of the argument I have left out the details of most
proofs, which are not hard.

4.1 Preliminaries

We have so far considered the (16, 6) configurations as geometrical objects,
this is because generally the matrices are unwieldy objects. However they
give insight in a number of ways. A lot of the proofs in this section follow
from an understanding of general (a, b) configurations and in particular what
the non-degeneracy condition means. I will not explain the details of these
proofs since my main interest is the geometry of the configurations, and the
proofs offer little insight.

As with any abstract idea it is important to find a meaningful represen-
tation. In this case putting the matrices in a form that displays as many
independent4 Rosenhain tetrahedra as possible gives the matrices more ge-
ometric meaning. In each of the three configurations it is always possible
to extend a set of independent Rosenhain tetrahedra until it contains 4 ele-
ments. And moreover any pair of such Rosenhain tetrahedra form an (8, 4)
configuration. There are other interesting ways to represent the matrix. In
particular to see the possible standard (8, 4) configurations in type A the

4By independent I mean that they have no points or planes in common.
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matrix can be split into 12 (4, 2) configurations and 4 (4,0) configurations,
see figure 14.

Once we have a matrix representing a configuration, abstract symmetries
of this configuration correspond to sets of row and column operations that
leave the matrix representation invariant.

In each configuration it is possible given a standard (8, 4) configuration to
find a second independent standard (8, 4) configuration. Given the form of
the main matrices in section 4.3 the result is obvious given either the ’upper-
left’ or ’lower-right’ (8, 4) configurations. I ask the reader to accept or check
that these standard (8, 4) configurations are not special in any way. Remark
2.5 is a consequence.

As an aside, in each configuration it is not difficult to see the number
of Rosenhain tetrahedra directly in the matrix, or to deduce it from the
number of standard (8, 4) configurations containing a given point or plane.
Everything comes down to standard (8, 4) configurations and how they fit
together.

4.2 The Symmetries

A symmetry of a (16, 6) configuration acts on a matrix representing the (16, 6)
configuration by taking it to itself. There are many ways to think of this.
Above I said this could be done using sets of row and column operations.
These can be seen as a pair of (16, 1) configurations which act by matrix
multiplication one on the left and the other on the right. Then the symmetry
group of an abstract (16, 6) configuration A is simply the set of pairs of (16, 1)
configurations which leave A invariant.

The groups obtained in section 3 did not depend on the choice of fixing
the plane H, if any other plane or point had been fixed the same groups
would have been obtained5. Both type (*) and type A have some duality
between planes and points, i.e. their matrices can be made symmetric. This

5This follows from the second part of the main proof in section 1. That shows that the
diagrams did not depend on the choice of H.
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makes the equivalence of the groups obvious. For type B configurations it is
also visible in the matrices, or can be shown by direct calculation.

Finding symmetries that can take H to any other plane is the next step.
For the type (*) configuration this is easy but I will use a method that can
be generalised. I will not go through exactly how I find symmetries but the
idea is simply to read off from the matrices a set of transpositions that leave
the matrix invariant.

The first symmetry must take the first row to the second.

(P2 P16)(P4 P5)(P1 P14)(P13 P15)(P3 P7)(P9 P11)(P6 P8)(P10 P12)

◦(H H4,5)(H2,5 H2,4)(H3,6 H1,2)(H1,4 H1,5)(H1,6 H2,3)

◦(H3,4 H3,5)(H1,3 H2,6)(H4,6 H5,6)

The second symmetry must take the first two rows to the second two
rows.

(P4 P16)(P2 P5)(P1 P13)(P14 P15)(P3 P11)(P7 P9)(P6 P12)(P8 P10)

◦(H H2,5)(H4,5 H2,4)(H3,6 H1,4)(H1,2 H1,5)(H1,6 H3,4)

◦(H2,3 H3,5)(H1,3 H4,6)(H2,6 H5,6)

The third symmetry must take the first four rows to the second four rows.

(P1 P16)(P2 P14)(P4 P13)(P5 P15)(P3 P6)(P7 P8)(P11 P12)(P9 P10)

◦(H H3,6)(H4,5 H1,2)(H2,5 H1,4)(H2,4 H1,5)(H1,6 H1,3)

◦(H2,3 H2,6)(H3,4 H4,6)(H3,5 H5,6)

The fourth symmetry must take the first eight rows to the second eight
rows.

(P3 P16)(P2 P7)(P4 P11)(P5 P9)(P1 P6)(P14 P8)(P13 P12)(P15 P10)

◦(H H1,6)(H4,5 H2,3)(H2,5 H3,4)(H2,4 H3,5)(H3,6 H1,3)

◦(H1,2 H2,6)(H1,4 H4,6)(H1,5 H5,6)
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These four symmetries generate a symmetry group G := Z
4
2 that takes

the plane H to any other plane. It is easy to see that the full symmetry
group G∗ of a type (*) configuration can be obtained by taking the span of
G and the group G′ ∼= S6 of symmetries that fix H. In fact G∗ is defined by
the following exact sequence:

1 // G // G∗
// G′ // 1

This is the same description that was found in [1]. The method described
above can also be used in the exotic cases to find generators that can take
the plane H to any other plane.

For the type A configuration:

The first symmetry must take the first row to the second but it is not
possible to find a symmetry leaving nothing invariant satisfying this.

(P1 P16)(P2 P14)(P3 P7)(P10 P11)(P9 P12)(P6 P8)(H H4,5)

◦(H2,5 H1,5)(H3,6 H1,2)(H1,4 H2,4)(H1,6 H1,3)(H3,5 H5,6)

The second symmetry must take the first two rows to the second two
rows.6

(P4 P16)(P2 P5)(P1 P13)(P14 P15)(P3 P11)(P7 P9)(P6 P12)(P8 P10)

◦(H H2,5)(H4,5 H2,4)(H3,6 H1,4)(H1,2 H1,5)(H1,6 H3,4)

◦(H2,3 H3,5)(H1,3 H4,6)(H2,6 H5,6)

The third symmetry must take the first four rows to the second four
rows.7

(P1 P16)(P2 P14)(P4 P13)(P5 P15)(P3 P6)(P7 P8)(P11 P12)(P9 P10)

◦(H H3,6)(H4,5 H1,2)(H2,5 H1,4)(H2,4 H1,5)(H1,6 H1,3)

6This is the same as for the type (*) configuration.
7This is the same as for the type (*) configuration.
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◦(H2,3 H2,6)(H3,4 H4,6)(H3,5 H5,6)

The fourth symmetry must take the first eight rows to the second eight
rows. No reflection satisfies this, but if we apply the fourth symmetry for
the type (*) configuration we can then ’correct’ the matrix by applying
(P2 P5)(P14 P15)(H2,3 H3,5)(H2,6 H5,6) which gives:

(P3 P16)(P2 P7 P5 P9)(P4 P11)(P1 P6)(P14 P8 P15 P10)(P13 P12)

◦(H H1,6)(H2,3 H4,5 H3,5 H2,4)(H2,5 H3,4)(H3,6 H1,3)

◦(H2,6 H1,2 H5,6 H1,5)(H1,4 H4,6)

Again these 4 symmetries are enough to go from a plane H to any other
plane, hence the entire symmetry group is the span of these symmetries and
A ∼= Z2 × S4 the symmetries fixing H. Unlike in the previous case the
intersection of the spans of both symmetry groups is not just the identity8,
so it can’t be written as an easy exact sequence.

For the type B configuration:

The first symmetry must take the first row to the second row but it is
not possible to find a symmetry leaving nothing invariant satisfying this.

(P1 P16)(P2 P14)(P3 P7)(P10 P11)(P9 P12)(P6 P8)(H H4,5)

◦(H2,5 H1,5)(H3,6 H1,2)(H1,4 H2,4)(H1,6 H1,3)(H3,5 H5,6)

The second symmetry must take the first two rows to the second two rows,
but it is not possible to find a symmetry leaving nothing invariant satisfying
this.

(P1 P16)(P4 P13)(P3 P11)(P7 P10)(P6 P12)(P8 P9)(H H2,5)

◦(H4,5 H1,5)(H3,6 H1,4)(H1,2 H2,4)(H1,6 H1,3)(H2,3 H2,6)

8It contains the square of the fourth symmetry and an element which is the conjugation
of the first by both the second and the third symmetries.
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The third symmetry must take the first four rows to the second four
rows.9

(P1 P16)(P2 P14)(P4 P13)(P5 P15)(P3 P6)(P7 P8)(P11 P12)(P9 P10)

◦(H H3,6)(H4,5 H1,2)(H2,5 H1,4)(H2,4 H1,5)(H1,6 H1,3)

◦(H2,3 H2,6)(H3,4 H4,6)(H3,5 H5,6)

The fourth symmetry must take the first eight rows to the second eight
rows. No reflection satisfies this, but if we apply the fourth symmetry for
the type (*) configuration we can then ’correct’ the matrix by applying
(P2 P4 P5)(P14 P13 P15)(H2,3 H3,4 H3,5)(H2,6 H4,6 H5,6) which gives:

(P3 P16)(P2 P7 P4 P11 P5 P9)(P1 P6)(P14 P8 P13 P12 P15 P10)

◦(H H1,6)(H2,3 H4,5 H3,4 H2,5 H3,5 H2,4)(H3,6 H1,3)

◦(H2,6 H1,2 H4,6 H1,4 H5,6 H1,5)

Again these 4 symmetries are enough to go from a plane H to any other
plane, hence the entire symmetry group is the span of these symmetries and
B ∼= Z2 × A4 the symmetries fixing H. Again the intersection of the spans
of both symmetry groups is not just the identity, so it can’t be written as an
easy exact sequence.

We have found sets of symmetries for each of the exotic cases that generate
their entire symmetry groups. But the groups that take H to any other point
are not Z

4
2, and I leave it to the reader to check that for both exotic cases no

such Z
4
2 could be found. This means that the exotic configurations do not

correspond to Kummer surfaces.

However if we quotient10 the groups out by the symmetries that fix the
plane H, we get11

Z2 ∗ Z
3
2 for type A and Z2 ∗ Z2 ∗ Z

2
2 for type B.

9This is the same as for the type (*) configuration.
10It is not clear that this is valid it is intended merely as an informal idea to give a bit

more understanding of the interaction between the groups.
11I use ∗ to denote a product, that is probably not direct, but I have not had time to

check.
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4.3 Extra visual aids

The matrix representations given here are chosen so that all three link to
their corresponding geometrical representation in the same way. There are
other matrices obtained from these by permutation of rows and columns such
as figure 14. The difference in what is easy to see is amazing when the matrix
is changed by permutations of rows and columns.
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P16 P2 P4 P5 P1 P14 P13 P15 P3 P7 P11 P9 P6 P8 P12 P10

H 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
H45 1 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0
H25 1 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0
H24 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1
H36 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0
H12 0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 0
H14 0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0
H15 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1
H16 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0
H23 0 1 0 0 0 1 0 0 1 0 1 1 0 1 0 0
H34 0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0
H35 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 1
H13 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1
H26 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1
H46 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1
H56 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0

Figure 11: A type (*) configuration.
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P16 P2 P4 P5 P1 P14 P13 P15 P3 P7 P11 P9 P6 P8 P12 P10

H 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
H45 1 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0
H25 1 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0
H24 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1
H36 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0
H12 0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 0
H14 0 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0
H15 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1
H16 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0
H23 0 1 0 0 0 1 0 0 1 1 1 0 0 0 0 1
H34 0 0 1 0 0 0 1 0 1 1 0 1 0 0 1 0
H35 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 0
H13 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1
H26 0 1 0 0 0 1 0 0 0 0 0 1 1 1 1 0
H46 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1
H56 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1

Figure 12: A type A configuration.
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H15 0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1
H16 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0
H23 0 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0
H34 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1
H35 0 0 0 1 0 0 0 1 1 0 1 1 0 1 0 0
H13 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1
H26 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1
H46 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0
H56 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1

Figure 13: A type B configuration.
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P16 P2 P1 P14 P4 P5 P13 P15 P11 P7 P12 P8 P3 P9 P6 P10

H25 1 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0
H45 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0 0
H14 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0
H12 0 1 1 0 0 0 1 1 0 1 0 1 0 0 0 0
H 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1 0

H24 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0 1
H36 1 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0
H15 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 1
H16 1 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0
H23 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1
H13 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 1
H26 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0
H34 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 0
H35 0 0 0 0 0 1 0 1 1 0 0 1 1 1 0 0
H46 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 1
H56 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 1

Figure 14: A different matrix of a type A configuration, that illustrates choices of
(8, 4) configurations.

40



Conclusion

My main aim was to investigate the exotic (16,6) configurations. In the first
section I went through the classification of non-degenerate (16, 6) configu-
rations. This and the second section were both strongly based on [1]. The
second section states the main result from her work, and sketches her proof.

The third section explored the symmetries using a geometric represen-
tation. This can be done for any symmetry, but it is particularly useful for
symmetries that fix a given plane, since everything can then be read from the
diagrams introduced there. In fact the diagrams directly give the fact that
the symmetry group fixing a given plane of each configuration is a subgroup
of S6.

An interesting point is the viewing of the symmetries in terms of the sub-
configurations, particularly the Rosenhain tetrahedra and the different (8, 4)
configurations. This is an idea that was taken further in section 4. There my
main aims were to show the insight that can be gained from the matrices,
and describe the entire symmetry groups.

It was disappointing to realise that the exotic configurations do not cor-
respond to Kummer surfaces. But it would still be interesting to find out
what space these configurations live in.
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[2] E.E. Kummer, Über die Flächen vierten Grades mit sechzehn singulären
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