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Katrin Wendland

Abstract In snapshots, this exposition introduces conformal field theory, with a
focus on those perspectives that are relevant for interpreting superconformal field
theory by Calabi-Yau geometry. It includes a detailed discussion of the elliptic genus
as an invariant which certain superconformal field theories share with the Calabi-
Yau manifolds. K3 theories are (re)viewed as prime examples of superconformal
field theories where geometric interpretations are known. A final snapshot addresses
the K3-related Mathieu Moonshine phenomena, where a lead role is predicted for
the chiral de Rham complex.

1 Introduction

Conformal quantum field theory (CFT) became popular in physics thanks to the
work by Belavin, Polyakov and Zamolodchikov. In their seminal paper [7], on the
one hand, they lay the mathematical foundations of axiomatic CFT, and on the other
hand, they show the physical significance of CFT for surface phenomena in statistical
physics by describing certain phase transitions of second order through CFT.

Another common source of conformal field theories is string theory, which is
many theoreticians’ favorite candidate for the unification of all interactions, includ-
ing gravity. Here, particles are described by strings that move in some potentially
complicated background geometry. The string dynamics are governed by a so-called
non-linear sigma model, such that conformal invariance yields the string equations
of motion. The quantum field theory living on the worldsheet of the string then is a
CFT. This implies deep relations between CFT and geometry, which have already
led to a number of intriguing insights in geometry, demanding for a more resilient
bridge between mathematics and physics.

For example, in the early 90s mirror symmetry provided a first success story
for the interaction between mathematics and physics in the context of CFT
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[14, 15, 57, 68]. However, a rigorous approach to those types of CFTs that are
relevant for such deep insights in algebraic geometry was not available, at the time.
As a result, the interaction betweenmathematics and physics inmany cases amounted
to a rather imbalanced division of work, where theoretical physicists provided the
most amazing predictions and left them to the mathematicians for a proof, who in
turn successfully detached their theories from their origins in physics.

With the advent of Monstrous Moonshine [9, 20, 42, 49, 88, 89], and with
Borcherds’ Fields Medal in 1998 “for his contributions to algebra, the theory of
automorphic forms, and mathematical physics, including the introduction of vertex
algebras and Borcherds’ Lie algebras, the proof of the Conway-Norton moonshine
conjecture and the discovery of a new class of automorphic infinite products” [71],
the subject of conformal field theory, per se, began to becomemore popular inmathe-
matics. Indeed, the comparatively new notion of vertex algebras provided a rigorous
mathematical foundation to the most basic ingredients of conformal quantum field
theory and thereby offered a viable approach to CFT for mathematicians. Neverthe-
less, the quest to fill the gap between abstract mathematical approaches to CFT and
those types of models that are of interest in physics, and that are relevant for deeper
insights in algebraic and enumerative geometry, has not yet been completed. The
present work attempts to make a contribution to this quest.

Since this exposition can certainly only provide some snapshots of CFT, it has
to follow a subjective selection and presentation of material. The guiding principle
is the conviction that on the one hand, the foundation of the discussion has to be a
mathematically rigorous definition of CFT, which is independent of string theory,
while on the other hand, those predictions from CFT which affect the geometry of
Calabi-Yau manifolds are among the most intriguing ones. To state and understand
the latter, one needs to work with a mathematical formulation of CFT which allows
to make contact with the non-linear sigma models in physics, thus sadly excluding
a number of popular approaches to CFT. Moreover, the discussion is restricted to
so-called two-dimensional Euclidean unitary CFTs.
In more detail, this work is structured as follows:

Section2 provides a definition of some of the ingredients of CFT. The conformal
vertex algebras serve as our point of entry in Sect. 2.1, since this part of CFT is proba-
bly themost natural for mathematicians.We proceed in Sect. 2.2 by listing the crucial
ingredients that underlie a definition of superconformal field theory, along with addi-
tional required properties. The presentation makes no claim for completeness, but
according to our declared conviction, we focus on those aspects that are relevant
for the discussion of geometric interpretations as introduced later. This in particu-
lar restricts our attention to the so-called N = (2, 2) superconformal field theories
with space-time supersymmetry. A useful class of examples, which is well under-
stood, is given by the toroidal N = (2, 2) superconformal field theories presented in
Sect. 2.3. We summarize the definition and properties of the chiral de Rham complex
in Sect. 2.5, as an example of a sheaf of conformal vertex algebras on an arbitrary
smooth algebraic variety, which thus provides a link between standard ingredients of
CFT and geometric quantities. Since this link is not entirely understood to the very
day, for clarification, our discussion rests on the special role of the elliptic genus
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as an invariant that certain superconformal field theories share with the Calabi-Yau
manifolds, as is discussed in some detail in Sect. 2.4.

The elliptic genus is also crucial for our definition of K3 theories in Sect. 3. This
class of CFTs deserves some attention, as it provides the only examples of non-linear
sigmamodels onCalabi-Yaumanifolds other than tori, where at least there are precise
predictions on the global form of the moduli space, implying some very explicit
relations between quantities in geometry and CFT. We motivate the definition of K3
theories in detail, and we summarize some of the known properties of these theories.
In particular, Proposition 2 recalls the dichotomy of N = (2, 2) superconformal field
theories at central charges c = 6, c = 6with space-time supersymmetry and integral
U (1)-charges. Indeed, these theories fall into two classes, namely the toroidal and
the K3 theories. Thus Proposition 2 is the conformal field theoretic counter part of
the classification of Calabi-Yau 2-manifolds into complex two-tori, on the one hand,
and K3 surfaces, on the other. Our proof [92, Sect. 7.1], which is little known, is
summarized in the Appendix.

The final Sect. 4 is devoted to recent developments in the study of K3 theories,
related to the mysterious phenomena known as Mathieu Moonshine. We recall the
route to discovery of these phenomena, which also proceeds via the elliptic genus.We
offer some ideas towards a geometric interpretation, arguing that one should expect
the chiral de Rham complex to be crucial in unraveling the Mathieu Moonshine
mysteries. The section closes with an open conjecture, which is related to Mathieu
Moonshine, which however is formulated neither alluding to moonshine nor to CFT,
and which therefore is hoped to be of independent interest.

2 Ingredients of Conformal Field Theory

The present section collects ingredients of conformal field theory (CFT), more pre-
cisely of two-dimensional Euclidean unitary conformal field theory. These adjectives
translate into the properties of the underlying quantum field theory as follows: First,
all fields are parametrized on a two-dimensional worldsheet, which comes equipped
with a Euclidean metric. Second, the fields transform covariantly under conformal
maps between such worldsheets. Furthermore, the space of states in such a CFT
is equipped with a positive definite metric, with respect to which the infinitesimal
conformal transformations act unitarily.

We begin by describing the simplest fields in our CFTs in terms of the so-called
vertex algebras in Sect. 2.1.Next, Sect. 2.2 summarizes a definition of conformal field
theory, with the toroidal conformal field theories presented as a class of examples in
Sect. 2.3. In Sects. 2.4 and 2.5 the related notions of the elliptic genus and the chiral de
Rham complex are discussed in the context of superconformal field theories. As such,
the present section collects ingredients of CFT, with a focus on those ingredients that
are under investigation to the very day.
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2.1 Conformal and Superconformal Vertex Algebras

We begin by recalling the notion of fields, following [61]. The theory is built on
the earlier results [9, 41, 67], see also [38] for a very readable exposition. This
definition is most convenient, because it naturally implements the representation
theory inherent to CFTs. As we shall see at the end of this section, for the chiral
states of CFTs it also allows a straightforward definition of the n-point functions.

Definition 1 Consider a C-vector space H.

• H[[z±1
1 , . . . , z±1

n ]] denotes the vector space of formal power series

v(z1, . . . , zn) =
∑

i1,...,in∈Z
v̂i1,...,in zi1

1 · · · zin
n , v̂i1,...,in ∈ H.

• For A ∈ EndC(H)[[z±1
1 , . . . , z±1

n ]], and for α ∈ H
∗ := HomC(H, C) and v ∈ H,

we set

〈α, A(z1, . . . , zn)v〉 :=
∑

i1,...,in∈Z
〈α, Âi1,...,in v〉zi1

1 · · · zin
n ∈ C[[z±1

1 , . . . , z±1
n ]],

where on the right hand side, 〈·, ·〉 denotes the natural pairing between H
∗ and H.

• If A(z) ∈ EndC(H)[[z±1]] with A(z) = ∑
n Ânzn , then ∂ A denotes the formal

derivative of A,

∂ A(z) =
∑

n∈Z
n Ânzn−1 ∈ EndC(H)[[z±1]].

• A formal power series A(z) ∈ EndC(H)[[z±1]] is called a field on H if A(z) =∑
n Ânzn obeys

∀v ∈ H : ∃N ∈ Z such that Ânv = 0 ∀n < N .

The endomorphisms Ân are called the modes of the field A.

In other words, if A is a field on H, then for every v ∈ H the expression A(z)v =∑
n( Ânv)zn is a formal Laurent series with coefficients in H and with only finitely

many non-zero contributions ( Ânv)zn with n < 0. In the context of CFTs one can
introduce a completion H of H with respect to an appropriate topology and then
for every z ∈ C

∗ view A(z) as a linear operator from H to H, see for example [38,
Sect. 1.2.1]. Accordingly, we call a field A(z) = ∑

n Ânzn constant if Ân = 0 for
all n �= 0. Similarly, if for v ∈ H we have Ânv = 0 for all n < 0, then we say that
A(z)v is well-defined in z = 0, and A(z)v|z=0 = Â0v. Note that a field A according
to Definition 1 can be viewed as an operator valued distribution, as usual in quantum
field theory. Indeed, by means of the residue, A(z) yields a linear map from complex
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polynomials into H. By definition, the space H carries a representation of the Lie
algebra generated by the modes of every field on H, with the Lie bracket that is
inherited from EndC(H), namely the commutator.

Let us now consider two fields A, B on H. While the expressions A(z)B(w) and
B(w)A(z) make sense as formal power series in EndC(H)[[z±1, w±1]], a priori it is
impossible to interpret them as fields. In general, we expect singular behavior for the
coefficients when we insert w = z, and in fact the form of this singularity captures
the most important aspects of CFT. Here, the notions of locality and normal ordered
products come to aid:

Definition 2

1. Let ∂w denote the formal derivative with respect to w in C[[z±1, w±1]]. On
C[[z, w]][z−1, w−1, (z − w)−1], we define the C[[z, w]][z−1, w−1]-linear oper-
ators ιz>w and ιw>z into C[[z±1, w±1]] with

for k ∈ N : ιz>w

(
k!(z − w)−k−1

)
= ∂k

w

1

z

∞∑

n=0

(
w

z

)n

,

ιw>z

(
k!(z − w)−k−1

)
= −∂k

w

1

w

∞∑

n=0

( z

w

)n
.

2. Fields A, B onH are called local with respect to each other if there exist
a so-called normal ordered product :A(z)B(w): ∈ EndC(H)[[z±1, w±1]]
and fields X0, . . . , X N−1 and : AB: on H, such that for every α ∈ H

∗ and v ∈ H,

• we have 〈α, :A(z)B(w): v〉 ∈ C[[z, w]][z−1, w−1],
• in EndC(H)[[z±1]], we have : AB:(z) = : A(z)B(w):|w=z ,
• in C[[z, w]][z−1, w−1, (z − w)−1], we have

ι−1
z>w (〈α, A(z)B(w)v〉) =

N−1∑

j=0

〈α, X j (w)v〉
(z − w) j+1 + 〈α, : A(z)B(w): v〉

= ι−1
w>z (〈α, B(w)A(z)v〉) .

Asa shorthandnotation onewrites the so-called operator product expansion
(OPE)

A(z)B(w) ∼
N−1∑

j=0

X j (w)

(z − w) j+1 .

For the special fields that feature in CFTs, the formal power series in the above
definition yield convergent functions in complex variables z and w on appropriate
domains in C. Then the operators ιz>w and ιw>z implement the Taylor expansions
about z = w in the domains |z| > |w| and |w| > |z|, respectively. We therefore refer
to these operators as (formal) Taylor expansions. The OPE thus captures the singular
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behavior of the expressions 〈α, A(z)B(w)v〉 when z ∼ w, where locality of the
fields A and B with respect to each other restricts the possible singularities to poles
at z = w. For [A(z), B(w)] := A(z)B(w) − B(w)A(z) ∈ EndC(H)[[z±1, w±1]],
the observation that, in general, 〈α, [A(z), B(w)]v〉 does not vanish, accounts for
the fact that (z − w)−1 and its derivatives have different Taylor expansions in the
domains |z| > |w| and |w| > |z|, respectively. Hence the modes of the fields X j in
the OPE encode the commutators [ Ân, B̂m] of the modes of A and B.

The Definition 2 of the normal ordered product :A(z)B(w): of two fields A, B on
H yields :A(z)B(w):= A+(z)B(w)+ B(w)A−(z) if A(z) = A+(z)+ A−(z), where
A+(z) := ∑

n≥0 Ânzn and A−(z) := ∑
n<0 Ânzn . Hence our definition of normal

ordered product amounts to a choice in decomposing A(z) = A+(z) + A−(z) as
stated, which accrues from the choice of decomposing the formal power series

∞∑

m=−∞
zmw−m−1 = ιz>w

(
(z − w)−1

)
− ιw>z

(
(z − w)−1

)
∈ C[[z±1, w±1]].

In the context of superconformal field theories, these notions are generalized to
include odd fields; if both A and B are odd, then locality amounts to

ι−1
z>w (〈α, A(z)B(w)v〉) =

N−1∑

j=0

〈α, X j (w)v〉
(z − w) j+1 + 〈α, : A(z)B(w): v〉

= −ι−1
w>z (〈α, B(w)A(z)v〉) ,

abbreviated by the same OPE as in Definition 2, and the bracket [·, ·] in the above
argument is replaced by a superbracket with [A(z), B(w)] = A(z)B(w)+ B(w)A(z)
for oddfields A, B. The spaceH, accordingly, furnishes a representation of the super-
Lie algebra generated by the modes of the fields on H.
The following list of examples provides some basic fields in the simplest CFTs:

Example 1 (U(1)-current)
We consider the complex Lie algebra A with C-vector space basis {C; an, n ∈ Z},
where C is a central element and the Lie bracket obeys

∀m, n ∈ Z : [an, am] = mδn+m,0 · C

3
.

Choose some c ∈ R and let H denote the A-module which under the A-action is
generated by a single non-zero vector Ω , with submodule of relations generated by

anΩ = 0 ∀n ≤ 0, CΩ = cΩ.

The space H can be viewed as polynomial ring in the an with n > 0. One then
checks that the so-called U (1)-current
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J (z) :=
∞∑

n=−∞
anzn−1

is a well-defined field on H which obeys the OPE

J (z)J (w) ∼ c/3

(z − w)2
.

In particular, J is local with respect to itself. Here and in the following, a constant
field which acts by multiplication by � ∈ C on H is simply denoted by �.

Example 2 (Virasoro field)
For the U (1)-current J on the vector space H introduced in the previous example,
assume c �= 0 and let T (z) := 3

2c :J J:(z). One checks that with c• = 1 this field on
H obeys the OPE

T (z)T (w) ∼ c•/2
(z − w)4

+ 2T (w)

(z − w)2
+ ∂T (w)

z − w
, (1)

which for the modes of T (z) = ∑
n Lnzn−2 translates into

∀n, m ∈ Z : [Ln, Lm] = (m − n)Lm+n + δn+m,0
c•
12 m(m2 − 1). (2)

The above Eq. (2) defines the Virasoro algebra at central charge c•, whose under-
lying vector space has C-vector space basis {c•; Ln, n ∈ Z}. This Lie algebra is
the central extension by spanC{c•} of the Lie algebra of infinitesimal conformal
transformations of the punctured Euclidean plane C

∗.
Example 3 (bc − βγ -system)
Let D ∈ N, and consider the super-Lie algebra AD with C-vector space basis {C;
ai

n, bi
n, ϕi

n, ψ i
n, n ∈ Z, i ∈ {1, . . . , D}}, where the ai

n, bi
n and the central element

C are even, while the ϕi
n, ψ i

n are odd, and the only non-vanishing basic super-Lie
brackets are

∀m, n ∈ Z, i, j ∈ {1, . . . , D} : [ai
n, b j

m] = δi, jδn+m,0 · C,

{ψ i
n, ϕ

j
m} = δi, jδn+m,0 · C.

(3)

Here, {·, ·} denotes the super-Lie bracket between odd elements of AD , as is
customary in the physics literature. Let H denote the AD-module which under the
AD-action is generated by a single non-zero vector Ω , with submodule of relations
generated by

∀n ≤ 0, m < 0, i, j ∈ {1, . . . , D} : ai
nΩ = 0, b j

mΩ = 0,

ψ i
nΩ = 0, ϕ

j
mΩ = 0; CΩ = Ω.
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Generalizing Examples 1 and 2 above, one checks that

ai (z) :=
∞∑

n=−∞
ai

nzn−1, bi (z) :=
∞∑

m=−∞
bi

m zm,

ψ i (z) :=
∞∑

n=−∞
ψ i

n zn−1, ϕi (z) :=
∞∑

m=−∞
ϕi

m zm, i ∈ {1, . . . , D}

defines pairwise local fields ai , bi , ψ i , ϕi on H. Moreover, one finds the OPEs

ai (z)b j (w) ∼ δi, j

z − w
, ϕi (z)ψ j (w) ∼ δi, j

z − w
∀ i, j ∈ {1, . . . , D},

while all other basic OPEs vanish, and the field

T top(z) :=
D∑

j=1

(
:∂b j a j:(z)+ :∂ϕ jψ j:(z)

)
(4)

is a Virasoro field obeying (1) at central charge c• = 0.

Example 4 (Topological N = 2 superconformal algebra)
With AD , H, and the fields of the bc − βγ -system defined in the above Example 3,
let

J (z) :=
D∑

j=1

:ϕ jψ j:(z), Q(z) :=
D∑

j=1

:a jϕ j:(z), G(z) :=
D∑

j=1

:ψ j∂b j:(z).
(5)

These fields obey the so-called topological N = 2 superconformal algebra at central
charge c = 3D:

T top(z)T top(w) ∼ 2T top(w)

(z − w)2
+ ∂T top(w)

z − w
, (6)

T top(z)J (w) ∼ − c/3

(z − w)3
+ J (w)

(z − w)2
+ ∂ J (w)

z − w
, J (z)J (w) ∼ c/3

(z − w)2
,

T top(z)Q(w) ∼ Q(w)

(z − w)2
+ ∂ Q(w)

z − w
, Q(z)Q(w) ∼ 0, J (z)Q(w) ∼ Q(w)

z − w
,

T top(z)G(w) ∼ 2G(w)

(z − w)2
+ ∂G(w)

z − w
, G(z)G(w) ∼ 0, J (z)G(w) ∼ − G(w)

z − w
,

Q(z)G(w) ∼ c/3

(z − w)3
+ J (w)

(z − w)2
+ T top(w)

z − w
. (7)
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Example 5 (N = 2 superconformal algebra)
Consider a C-vector space H and pairwise local fields T top(z), J (z), Q(z), G(z)
on H which obey the topological N = 2 superconformal algebra (6)–(7) at central
charge c. Now let

T (z) := T top(z) − 1

2
∂ J (z), G+(z) := Q(z), G−(z) := G(z). (8)

Then T (z) is another Virasoro field as in (1), but now with central charge c• = c,
and the fields T (z), J (z), G+(z), G−(z) on H obey the so-called N = 2 supercon-
formal algebra at central charge c,

T (z)T (w) ∼ c/2

(z − w)4
+ 2T (w)

(z − w)2
+ ∂T (w)

z − w
, (9)

T (z)J (w) ∼ J (w)

(z − w)2
+ ∂ J (w)

z − w
, J (z)J (w) ∼ c/3

(z − w)2
,

T (z)G±(w) ∼ 3/2G±(w)

(z − w)2
+ ∂G±(w)

z − w
, J (z)G±(w) ∼ ±G±(w)

z − w
,

G±(z)G∓(w) ∼ c/3

(z − w)3
± J (w)

(z − w)2
+ T (w) ± 1

2∂ J (w)

z − w
, G±(z)G±(w) ∼ 0.

(10)

Equation (8) is referred to by the statement that the fields T top(z), J (z), Q(z), G(z)
are obtained from the fields T (z), J (z), G+(z), G−(z) by a topological A-twist.
Analogously, fields T top(z), −J (z), Q(z), G(z) which obey a topological N = 2
superconformal algebra at central charge c are obtained from fields T (z), J (z),
G+(z), G−(z) which obey an N = 2 superconformal algebra at central charge c by
a topological B-twist iff T top(z) = T (z)− 1

2∂ J (z), Q(z) = G−(z), G = G+(z), see
[35, 98]. On the level of the N = 2 superconformal algebras, the transition between
topological A-twist and topological B-twist is induced by (T, J, G+, G−) �→
(T, −J, G−, G+), an automorphism of the superconformal algebra. This automor-
phism is at the heart of mirror symmetry [68].

We are now ready to define one of the fundamental ingredients of CFT, namely
the notion of conformal vertex algebra. The definition is taken from [38] and follows
[9, 39, 61]:

Definition 3 A conformal vertex algebra at central charge c ∈ C is
given by the following data:

• A Z-graded C-vector space W = ⊕m∈ZWm called the space of states.
• A special vector Ω ∈ W0 called the vacuum.
• A linear operator L : W → W called the translation operator.
• A special vector T ∈ W2 called the conformal vector.
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• A linear map
Y (·, z) : W −→ End(W )[[z±1]],

called the state- field correspondence, which assigns to every A ∈ W a field
A(z) := Y (A, z) on W .

These data obey the following axioms:

• The vacuum axiom: We have Ω(z) = 1, and for every A ∈ W and A(z) =∑
n Ânzn , we obtain A(z)Ω ∈ W [[z]], such that A(z)Ω is well-defined in z = 0

and
A(z)Ω|z=0 = Â0Ω = A ∈ W.

One says: The field A(z) creates the state A from the vacuum.
• The translation axiom:

LΩ = 0 and ∀A ∈ W : [L , A(z)] = ∂ A(z).

• The locality axiom:
All fields A(z) with A ∈ W are local with respect to each other.

The (ungraded) vector space W with Ω , L , and the map Y is called a vertex
algebra. In a conformal vertex algebra, in addition

• The field T (z) = ∑∞
n=−∞ Lnzn−2 associated to the conformal vector T by the

state-field correspondence is a Virasoro field obeying the OPE (1) with central
charge c• = c.

• The translation operator L is given by L = L1 and has degree 1.
• For all m ∈ Z, L0|Wm = m, and for A ∈ Wm , the field A(z) has weight m, i.e.

A(z) = ∑∞
n=−∞ Anzn−m with An ∈ End(W ) of degree n.

In the context of superconformal field theories, the notion of conformal vertex
algebras of Definition 3 is generalized to superconformal vertex algebras. For an
N = 2 superconformal vertex algebra, the vector space W in the above Definition is
graded by 1

2Z instead of Z, one needs to allow odd fields A(z) = Y (A, z), which can
havemode expansions in z1/2 ·End(W )[[z±1]], and one needs to generalize the notion
of locality to such fields, as explained in the discussion of Definition 2. Finally, one
needs to assume that there exist special states J ∈ W1 and G± ∈ W3/2 such that the
associated fields J (z), G±(z) obey the N = 2 superconformal algebra (9)–(10).

An important ingredient of CFT are the so-called n-point functions, which asso-
ciate a function in n complex variables to every n-tuple of states in the CFT.
These n-point functions are naturally related to the notion of vertex algebras, as
we shall illustrate now. Assume that W is the Z-graded vector space which under-
lies a conformal vertex algebra, with notations as in Definition 3. Furthermore,
assume that W comes equipped with a positive definite scalar product 〈·, ·〉, such
that W = ⊕m∈ZWm is an orthogonal direct sum. Let A(z), B(w) denote the
fields associated to A, B ∈ W by the state-field correspondence, which are local
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with respect to each other by the locality axiom. Hence by the very Definition 2
of locality, the formal power series 〈Ω, A(z)B(w)Ω〉 and 〈Ω, B(w)A(z)Ω〉 are
obtained from the same series in C[[z, w]][z−1, w−1, (z − w)−1] by means of the
(formal) Taylor expansions ιz>w and ιw>z , respectively. This series is denoted by
〈A(z)B(w)〉 ∈ C[[z, w]][z−1, w−1, (z − w)−1], such that

ιz>w (〈A(z)B(w)〉) = 〈Ω, A(z)B(w)Ω〉, ιw>z (〈A(z)B(w)〉) = 〈Ω, B(w)A(z)Ω〉.

Then 〈A(z)B(w)〉 is an example of a 2-point function, and for A1, . . . , An ∈ W
one analogously defines the n-point functions 〈A1(z1) · · · An(zn)〉 by successive
OPE. The additional properties of CFTs ensure that these n-point functions define
meromorphic functions in complex variables z1, . . . , zn ∈ C, whose possible poles
are restricted to the partial diagonals zi = z j , i �= j .

2.2 Defining Conformal Field Theories

This section summarizes an axiomatic approach to conformal field theory. Instead
of a full account, the focus lies on those ingredients of CFTs that are relevant for the
remaining sections of this exposition. More details can be found e.g. in [91, 94]. We
list the ingredients and defining properties of a two-dimensional Euclidean unitary
conformal field theory at central charges c, c:

Ingredient I. [The space of states H]
The space H is a C-vector space with positive definite scalar product 〈·, ·〉 and
with a compatible real structure v �→ v∗. Furthermore, there are two Virasoro
fields T (z), T (z) of central charges c, c on H, see Eq. (1), where the OPE
between T and T is trivial:

T (z)T (z) ∼ 0.

The space of states of a CFT must have a number of additional properties:

Property A.The space of statesH furnishes a unitary representation of the two
commuting copies of a Virasoro algebra generated by the modes Ln, Ln, n ∈
Z, of the Virasoro fields T (z) and T (z), which is compatible with the real
structure of H. The central elements c, c act by multiplication with fixed, real
constants, also denoted c, c ∈ R. The operators L0 and L0 are self-adjoint and
positive semidefinite, andHdecomposes into a direct sumof their simultaneous
eigenspaces indexed by R ⊂ R

2,
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H =
⊕

(h,h)∈R

Hh,h, Hh,h := ker (L0 − h · id) ∩ ker
(
L0 − h · id).

By this we mean that R does not have accumulation points, and that every
vector in H is a sum of contributions from finitely many different eigenspaces
Hh,h . Moreover, every Hh,h is finite dimensional.

Property A ensures that the space of states H of every conformal field theory
furnishes a very well-behaved representation of two commuting copies of a Virasoro
algebra. In addition, we need to assume that the character of this representation has
favorable properties:

Property B. For τ ∈ C, �(τ ) > 0, let q := exp(2π iτ); the partition function

Z(τ ) :=
∑

(h,h)∈R

(
dimCHh,h

)
qh−c/24qh−c/24 = TrH

(
q L0−c/24q L0−c/24

)

is well defined for all values of τ in the complex upper halfplane, and it is
invariant under modular transformations

τ �→ aτ + b

cτ + d
,

(
a b
c d

)
∈ SL(2, Z).

Since by Property B the partition function is modular invariant, it in particular is
invariant under the translation τ �→ τ + 1 of the modular parameter. This implies
that for every pair (h, h) ∈ R of eigenvalues of L0 and L0, we have h − h ∈ Z.
Hence the subspaces W := ker

(
L0

)
and W := ker (L0) are Z-graded by L0 and

L0, respectively. To obtain a CFT, these subspaces are required to carry additional
structure, which we are already familiar with:

Property C. The subspaces W := ker
(
L0

)
and W := ker (L0) of H carry

the structure of conformal vertex algebras, see Definition 3, with T (z) and
T (z) the fields associated to the respective conformal vectors by the state-
field correspondence. Moreover, the vacuum vector Ω of the conformal vertex
algebra W agrees with the vacuum vector of W , and Ω is a real unit vector
yielding a basis of W ∩ W = H0,0.
The vertex algebras with underlying vector spaces W and W are called the
chiral algebras of the CFT, and to simplify the terminology, we also refer to
W and W as the chiral algebras.
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As was discussed at the end of Sect. 2.1, in this setting there is a natural definition
of n-point functions for the fields in the chiral algebras associated to W and W .
This definition, however, is not sufficient to capture the general n-point functions of
conformal field theory. The notion is generalized along the following lines:

Ingredient II. [The system 〈· · · 〉 of n-point functions]
The space of states H is equipped with a system 〈· · · 〉 of n-point functions,
that is, for every n ∈ N we have a map

H
⊗n −→ Maps(Cn \

⋃

i �= j

Di, j , C), Di, j := {
(z1, . . . , zn) ∈ C

n | zi = z j
}
,

which is compatible with complex conjugation, and such that every function
in the image is real analytic and allows an appropriate expansion about every
partial diagonal Di, j .

The following Property D, which along with Property E governs the behavior of
the n-point functions, is immediate on the chiral algebras W and W , by definition:

Property D. The n-point functions are local, that is, for every permutation
σ ∈ Sn and all φi ∈ H,

〈φ1(z1) · · · φn(zn)〉 = 〈φσ(1)(zσ(1)) · · · φσ(n)(zσ(n))〉.

Consider an n-point function 〈φ(z1) · · · φ(zn)〉 with φ = φ1 = · · · = φn ∈ H as
a function of one complex variable z = zk , while all other zl , l �= k, are fixed. The
closure of the domain of definition of this function is the worldsheet on which the
n-point function is defined. Therefore, Ingredient II yields n-point functions whose
worldsheet is the Riemann sphere C. As a basic feature of conformal field theory,
the n-point functions are assumed to transform covariantly under conformal maps
between worldsheets. In particular,

Property E.Then-point functions arePoincaré covariant, that is, for all isome-
tries and all dilations f of the Euclidean plane C, and for all φi ∈ Hhi ,hi

,

〈φ1( f (z1)) · · · φn( f (zn))〉 =
n∏

i=1

[(
f ′(zi )

)−hi f ′(zi )
−hi

]
〈φ1(z1) · · · φn(zn)〉,
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where f ′(z) = ∂z f (z). Moreover, infinitesimal translations αL1 +
αL1, α, α ∈ C, are represented by α∂z + α∂z , i.e. for arbitrary φi ∈ H,

〈φ1(z1) · · · φn−1(zn−1)(L1φn)(zn)〉 = ∂

∂zn
〈φ1(z1) · · · φn−1(zn−1)φn(zn)〉,

〈φ1(z1) · · · φn−1(zn−1)(L1φn)(zn)〉 = ∂

∂zn
〈φ1(z1) · · · φn−1(zn−1)φn(zn)〉.

The remaining requirements on the n-point functions, unfortunately, are rather
more involved. Roughly, they firstly generalize Property E by ensuring that the rep-
resentation of the two commuting copies of the Virasoro algebra on H (see Property
A) induces an action by infinitesimal conformal transformations on the worldsheet.
Furthermore, the operator product expansion of Definition 2 is generalized to induce
the appropriate expansions of the n-point functions about partial diagonals, see Ingre-
dient II. Finally, n-point functions must be defined on worldsheets with arbitrary
genus. Since these additional properties are not needed explicitly in the remaining
sections of the present exposition, here only the relevant keywords are listed in the
final

Property F. The system 〈· · · 〉 of n-point functions is conformally covariant,
and it represents an operator product expansion such that reflection positivity
holds. Moreover, the universality condition holds, and sewing allows to define
n-point functions on worldsheets of arbitrary genus.

As was mentioned at the beginning of this section, the ingredients of CFTs listed
above yield two-dimensional Euclidean unitary conformal field theories. Indeed,
these adjectives have been implemented in Properties A–F: According to the discus-
sion that precedes Property E along with Property F, the worldsheets of our CFTs are
two-dimensional Euclidean manifolds. Conformality is implemented by means of
the two commuting copies of the Virasoro algebra, see the discussion of Eqs. (1) and
(2), which act by infinitesimal conformal transformations on the worldsheets of the
n-point functions by Properties E and F. On the space of statesH, Property A ensures
that the representation of the infinitesimal conformal transformations is unitary.

Our approach to CFT is convenient, since it concretely implements the interplay
between representation theory with the analytic properties of the n-point functions,
which is characteristic of two-dimensional conformal quantum field theories. How-
ever, the relation to more general quantum field theories (QFTs) is not so evident.
Let us briefly comment on this connection.

First, for the relevant QFTswe restrict to Euclidean quantumfield theories accord-
ing to a system of axioms that are based on the Osterwalder-Schrader axioms [78,
79], see [37, 82]. According to [78, 79], these axioms ensure that from such a QFT
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one can construct a Hilbert space H̃ of states φ and associated fields Yφ , where each
field Yφ yields a densely defined linear operator Yφ(h) on H̃ for every test function
h. Moreover, there is a special state Ω which plays the role of the vacuum as in our
Property C.

The Osterwalder-Schrader axioms require the existence of correlation functions
associated to every n-tuple of states in H̃ which resemble the n-point functions
of CFT according to our Ingredient II. To obtain the fields of CFT from those of
the general QFT, one needs to perform a procedure called localization. Within the
Hilbert space H̃ one restricts to the subspace H which is generated by those states
that are created by the localized field operators from the vacuum, generalizing the
vacuum axiom of our Definition 3. The Osterwalder-Schrader axioms then ensure
that locality (Property D), Poincaré covariance under isometries (Property E) and
reflection positivity (Property F) hold for the n-point functions obtained from the
correlation functions of the QFT.

According to [37], conformal covariance can be implemented by means of three
additional axioms, ensuring the covariance of the n-point functions under dilations
(Property E), the existence of the Virasoro fields (Ingredient I) and of an OPE (Prop-
erties C and F) with all the necessary features. See [82, Sect. 9.3] for an excellent
account.

If a CFT is obtained from a conformally covariant QFT by localization, then one
often says that the CFT is the short distance limit of the QFT. For details on this
mathematical procedure see [37, 43, 90]. To the author’s knowledge, it is unknown
whether a CFT in the sense of our approach can always be viewed as a short distance
limit of a full-fledged QFT.

With the above, we do not claim to provide a minimal axiomatic approach to CFT.
For example, the requirement of Property F that n-point functions arewell-defined on
worldsheets of arbitrary genus implies modular invariance of the partition function,
whichwas assumed separately inPropertyB. Indeed, the partition function Z(τ ) is the
0-point function on a worldsheet torus with modulus τ , where conformal invariance
implies that Z(τ ) indeed solely depends on the complex structure represented by
τ ∈ C, �(τ ) > 0. Property B is stated separately for clarity, and because modular
invariance plays a crucial role in the discussion of the elliptic genus in Sect. 2.4 which
is also essential for the remaining sections of this exposition, while we refrain from
a detailed discussion of Property F.

Mathematical implications of modular invariance for CFTs were first pointed out
by Cardy [16]. He observed that for those theories that had been studied by Belavin,
Polyakov and Zamolodchikov in their seminal paper [7], and that describe physi-
cal phenomena in statistical physics, modular invariance of the partition function
poses constraints on the operator content. These constraints can be useful for the
classification of CFTs.

In special cases, modular invariance can be proven from first principles, assuming
only that the n-point functions arewell-defined on theRiemann sphere. In [74],Nahm
argues that the assumption that the n-point functions on the torus define thermal states
of the field algebra, which in turn is of type I, suffices to deduce modular invariance.
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Under an assumption known as Condition C or Condition C2, which amounts to
certain quotients of the chiral algebras being finite dimensional, Zhu proves in [102]
that modular invariance follows, as well. This covers a large class of examples of
CFTs, among them the ones studied by Belavin, Polyakov and Zamolodchikov.

An N = (2, 2) superconformal field theory is a CFT as above, where the notion
of locality is generalized according to what was said in the discussion of Defini-
tion 2, and the representations of the two commuting copies of a Virasoro algebra are
extended to representations of N = 2 superconformal algebras, see Eqs. (9)–(10).
As a first additional ingredient to these theories one therefore needs

Ingredient III. [Compatible Z2-grading of the space of states]
The space of states H carries a Z2-grading H = Hb ⊕ H f into worldsheet
bosons Hb (even) and worldsheet fermions H f (odd), which is compatible
with Properties A–F.
Inmore detail, for compatibilitywith PropertyA, the decompositionH = Hb⊕
H f must be orthogonal and invariant under the action of the two commuting
copies of the Virasoro algebra. In Property B, the trace defining the partition
function is taken over the bosonic subspace Hb, only. The chiral algebras
introduced in Property C must contain N = 2 superconformal vertex algebras
as introduced in the discussion of Definition 3, whose modes act unitarily on
H. The notion of locality in Property D is generalized to semi-locality, meaning
that

〈φ1(z1) · · · φn(zn)〉 = (−1)I 〈φσ(1)(zσ(1)) · · · φσ(n)(zσ(n))〉

if σ ∈ Sn and all φi ∈ H have definite parity. Here, I is the number of
inversions of odd states in σ , that is, the number of pairs (i, j) of indices with
i < j and σ(i) > σ( j) and such that φi , φ j ∈ H f . Properties E and F remain
unchanged.

The fields in the chiral algebras of the CFT that furnish the two commuting copies
of N = 2 superconformal vertex algebras according to Property III are generally
denoted T (z), J (z), G+(z), G−(z) and T (z), J (z), G

+
(z), G

−
(z) with OPEs as

in (9)–(10). The mode expansions for the even fields are denoted as

T (z) =
∑

n

Lnzn−2, J (z) =
∑

n

Jnzn−1, T (z) =
∑

n

Lnzn−2, J (z) =
∑

n

J nzn−1,

(11)
in accord with Definition 3. As mentioned in the discussion after Definition 3, the
odd fields G±(z) can have mode expansions either in EndC(H)[[z±1]] or in z1/2 ·
EndC(H)[[z±1]], and analogously for G

±
(z). This induces another Z2 × Z2 grading

of the space of states H,

H = H
N S,N S ⊕ H

R,R ⊕ H
N S,R ⊕ H

R,N S, (12)
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where

G±(z) ∈ EndC(HN S,•)[[z±1]], G
±
(z) ∈ EndC(H•,N S)[[z±1]]

in the so-called Neveu-Schwarz- or NS-sector, while

G±(z) ∈ z1/2 · EndC(HR,•)[[z±1]], G
±
(z) ∈ z1/2 · EndC(H•,R)[[z±1]]

in the so-called Ramond- or R-sector. That is, on H
S,S the fields G±(z) and G

±
(z)

have mode expansions according to the S and the S sector, respectively, with S, S ∈
{R, N S}.

In what follows, we restrict our attention to so-called non–chiral N = (2, 2)
superconformal field theories with space-time supersymmetry:

Ingredient IV. [Space-time supersymmetry]
The space of states H carries another compatible Z2-grading by means of the
properties of the odd fields G±(z) and G

±
(z) of the N = 2 superconformal

vertex algebra into
H = H

N S ⊕ H
R .

Here, the decomposition (12) reduces to H
N S := H

N S,N S and H
R := H

R,R ,
while the sectors H

N S,R and H
R,N S are trivial.

Moreover, as representations of the two commuting N = 2 superconformal
algebras of Ingredient III, H

N S and H
R are equivalent under an isomorphism

Θ : H → H which interchanges H
N S and H

R and which obeys

[L0,Θ] = c
24Θ − 1

2Θ ◦ J0, [J0,Θ] = − c
6Θ,

[L0,Θ] = c
24Θ − 1

2Θ ◦ J 0, [J 0,Θ] = − c
6Θ,

(13)

where L0, J0, L0, J 0 are the zero-modes of the fields T (z), J (z), T (z), J (z)
obtained from the mode expansions (11). The isomorphism Θ is induced by
a field of the theory called spectral flow, and it is also known as space-time
supersymmetry.

With the above notion of CFT, a number of examples are known, like minimal
models, both the bosonic [7, 55] and the supersymmetric ones [13, 24, 81, 101]. In
string theory, so-called non-linear sigmamodel constructions are believed to provide
a map from certain manifolds to CFTs. While this construction is well understood
for the simplest manifolds, namely for tori, the mathematical details in general are
far from known.
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2.3 Example: Toroidal Conformal Field Theories

For illustration and for later reference, this section very briefly presents the class of
so-called toroidal conformal field theories. These theories are characterized by the
existence of “sufficiently many U (1)-currents” as in Example 1 of Sect. 2.1.

We say that the chiral algebra W = ⊕m Wm of a CFT (see Property C,
Sect. 2.2) contains a u(1)d -current algebra, if W1 contains an orthogonal system(
ak
1Ω, k ∈ {1, . . . , d}) of states, which under the state-field correspondence of

Definition 3 have associated fields j k(z), k ∈ {1, . . . , d}, obeying the OPEs

∀k, l ∈ {1, . . . , d} : j k(z) j l(w) ∼ δk,l

(z − w)2
. (14)

For (bosonic) CFTs we then have

Definition 4 A conformal field theory at central charges c, c is called toroidal,
if c = c = d with d ∈ N, and if the chiral algebras W = ⊕m Wm , W = ⊕m W m of
Property C, Sect. 2.2, each contain a u(1)d -current algebra.

For our purposes, the toroidalN = (2, 2) superconformal field theories are more
relevant. They are characterized by the fact that their bosonic sector with space of
states Hb contains a toroidal CFT at central charges 2D, 2D in the sense of Defi-
nition 4, and in addition, they contain D left- and D right-moving so-called Dirac
fermions with coupled spin structures. By this we mean first of all that the subspace
W1/2 ⊂ W of the vector space underlying the chiral algebra contains an orthogonal
system

(
(ψk±)1/2Ω, k ∈ {1, . . . , D}) of states, which under the state-field corre-

spondence of Definition 3 have associated (odd) fields ψ±
k (z), k ∈ {1, . . . , D},

obeying the OPEs

∀k, l ∈ {1, . . . , D} : ψ+
k (z)ψ−

l (w) ∼ δk,l

z − w
, ψ±

k (z)ψ±
l (w) ∼ 0, (15)

and analogously for the subspace W 1/2 ⊂ W of the vector space underlying the
second chiral algebra in Property C. In addition, allψ±

k (z) are represented by formal
power series in EndC(HN S)[[z±1]] on H

N S , while on H
R , they are represented in

z1/2 ·EndC(HR)[[z±1]], and analogously for theψ
±
k (z). One shows that such a system

of D left- and D right-moving Dirac fermions yields a well-defined CFT at central
charges D, D (see e.g. [53, Sect. 8.2] or [91, Chap.5]).

Definition 5 An N = (2, 2) superconformal field theory at central charges c, c
with space-time supersymmetry is toroidal, if c = c = 3D with D ∈ N, and if this
theory is the tensor product of a toroidal conformal field theory at central charges
2D, 2D according to Definition 4, and a system of D left- and D right-moving Dirac
fermions with coupled spin structures. Moreover, the fields ψ±

k (z), k ∈ {1, . . . , D},
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in (15) are the superpartners of the U (1)-currents j l(z), l ∈ {1, . . . , 2D} in (14),
and analogously for the right-moving fields. By this we mean that for the fields
G±(z), G

±
(z) in the two commuting superconformal vertex algebras (9)–(10), and

with notations as above, we have

∀k ∈ {1, . . . , D} : G±
−1/2ak

1Ω = (ψk±)1/2Ω, G±
−1/2ak+D

1 Ω = ∓i(ψk±)1/2Ω,

G
±
−1/2ak

1Ω = (ψ
k
±)1/2Ω, G

±
−1/2ak+D

1 Ω = ∓i(ψ
k
±)1/2Ω.

The toroidal conformal and superconformal field theories have been very well
understood by string theorists since the mid eighties [17, 76], and these theories
have also been reformulated in terms of the vertex algebras presented in Sect. 2.1
[38, 61, 63]. This includes the interpretation of the toroidal conformal field theories
as non-linear sigma models on tori, their deformations, and thus the structure of the
moduli space of toroidal CFTs:

Theorem 1 ([76]) The moduli space Mtor
D of toroidal N = (2, 2) superconformal

field theories at central charges c = c = 3D with D ∈ N is a quotient of a 4D2-
dimensional Grassmannian by an infinite discrete group,

Mtor
D = O+(2D, 2D; Z)\T 2D,2D,

where T 2D,2D := O+(2D, 2D; R)/SO(2D) × O(2D).

Here, if pq �= 0, then O+(p, q; R) denotes the group of those elements in
O(p, q; R) = O(Rp,q) which preserve the orientation of maximal positive def-
inite oriented subspaces in R

p,q , and if p ≡ q mod 8, then O+(p, q; Z) =
O+(p, q; R) ∩ O(Zp,q) with Z

p,q ⊂ R
p,q the standard even unimodular lattice

of signature (p, q).

2.4 The Elliptic Genus

In this section, the conformal field theoretic elliptic genus is introduced and compared
to the geometric elliptic genus that is known to topologists and geometers. This and
the following section are completely expository with more details and proofs to be
found in the literature as referenced.

Let us first consider an N = (2, 2) superconformal field theory at central charges
c, c with space-time supersymmetry according to the Ingredients I–IV of Sect. 2.2.
For the zero-modes J0, J 0 of the fields J (z), J (z) in the two commuting N = 2
superconformal algebras T (z), J (z), G+(z), G−(z), T (z), J (z), G

+
(z), G

−
(z)

of Ingredient III according to (11) one finds: These linear operators are self-adjoint
and simultaneously diagonalizable on the space of states H = H

N S ⊕ H
R . By

Ingredient IV, the corresponding operator of spectral flow induces an equivalence of
representations H

N S ∼= H
R of the two N = 2 superconformal algebras. This turns
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out to imply that the linear operator J0 − J 0 has only integral eigenvalues, which are
even onHb and odd onH f , see e.g. [92, Sect. 3.1]. Hence (−1)J0−J 0 is an involution
which yields the Z2-grading H = Hb ⊕ H f and an induced Z2-grading on H

R .
Following [30], this allows the definition of a supercharacter of the superconformal
field theory, analogous to the partition function in Property B:

Definition 6 Consider an N = (2, 2) superconformal field theory at central charges
c, c with space-time supersymmetry. Set q := exp(2π iτ) for τ ∈ C, �(τ ) > 0, and
y := exp(2π i z) for z ∈ C. Then

E(τ, z) := StrHR

(
y J0q L0−c/24q L0−c/24

)

= TrHR

(
(−1)J0−J 0 y J0q L0−c/24q L0−c/24

)

is the conformal field theoretic elliptic genus of the theory.

Using known properties of the N = 2 superconformal algebra and of its irre-
ducible unitary representations, one shows (see [23, 30, 100] for the original results
and e.g. [92, Sect. 3.1] for a summary and proofs):

Proposition 1 Consider the conformal field theoretic elliptic genus E(τ, z) of an
N = (2, 2) superconformal field theory at central charges c, c with space-time
supersymmetry.
Then E(τ, z) is holomorphic in τ and bounded when τ → i∞.
It is invariant under smooth deformations of the underlying superconformal field
theory to any other space-time supersymmetric N = (2, 2) superconformal field
theory with the same central charges.
Moreover, E(τ, z) transforms covariantly under modular transformations,

E(τ + 1, z) = E(τ, z), E(−1/τ, z/τ) = e2π i c
6 · z2

τ E(τ, z).

If in addition c = c ∈ 3N, and all eigenvalues of J0 and J 0 in the Ramond sector
lie in c

6 + Z, then

E(τ, z + 1) = (−1)
c
3 E(τ, z), E(τ, z + τ) = q− c

6 y− c
3 E(τ, z).

In other words, E(τ, z) is a weak Jacobi form (with a character, if c/3 is odd) of
weight 0 and index c/6.

Note that the additional assumptions on the central charges and the eigenvalues
of J0 and J 0 in the last statement of Proposition 1 are expected to hold for super-
conformal field theories that are obtained by a non-linear sigma model construction
from some Calabi-Yau D-manifold.

On the other hand, following Hirzebruch’s seminal work on multiplicative
sequences and their genera [59], the elliptic genus is known to topologists as a ring
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homomorphism from the cobordism ring of smooth oriented compact manifolds into
a ring of modular functions [60, 66]. For simplicity we assume that our underlying
manifold X is a Calabi-Yau D-manifold. Then its associated geometric elliptic genus
EX (τ, z) can be viewed as a modular function obeying the transformation properties
of Proposition 1 with c = 3D and interpolating between the standard topological
invariants of X , namely its Euler characteristic χ(X), its signature σ(X), and its
topological Euler characteristic χ(OX ).

To understand this in more detail, first recall the definition of the topological
invariants mentioned above: For y ∈ C the Hirzebruch χy-genus [59] is defined by

χy(X) :=
D∑

p,q=0

(−1)q y ph p,q(X),

where the h p,q(X) are the Hodge numbers of X . Then

χ(X) := χ−1(X), σ (X) := χ+1(X), χ(OX ) := χ0(X). (16)

Note that by the usual symmetries among the Hodge numbers h p,q(X) of a com-
plex Kähler manifold X , the signature σ(X) = ∑

p,q(−1)q h p,q(X) vanishes if the
complex dimension D of X is odd; we have thus trivially extended the usual defini-
tion of the signature on oriented compactmanifolds whose real dimension is divisible
by 4 to all compact complex Kähler manifolds.

Tomotivate a standard formula for the specific elliptic genus which is of relevance
to us, see Definition 7, we draw the analogy to the interpretation of the topological
invariants (16) in terms of the Atiyah-Singer Index Theorem [5]. For any complex
vector bundle E on X and a formal variable x , we introduce the shorthand notations

�x E :=
⊕

p

x p�p E, Sx E :=
⊕

p

x p S p E,

where �p E, S p E denote the exterior and the symmetric powers of E , respectively,
along with the Chern character on such formal power series in x whose coefficients
are complex vector bundles Fp:

ch(
⊕

p

x p Fp) :=
∑

p

x pch(Fp).

Then by the Hirzebruch-Riemann-Roch formula [58], which can be viewed as a
special case of the Atiyah-Singer Index Theorem, one finds

χy(X) =
∫

X

Td(X)ch(�y T ∗), (17)
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where Td(X) denotes the Todd genus and T := T 1,0X is the holomorphic tangent
bundle of X . Generalizing the expression in Eq. (17) and following [60, 65, 97] we
now have

Definition 7 Let X denote a compact complex D-manifold with holomorphic tan-
gent bundle T := T 1,0X . Set

Eq,−y := y−D/2
∞⊗

n=1

(
�−yqn−1T ∗ ⊗ �−y−1qn T ⊗ Sqn T ∗ ⊗ Sqn T

)
,

viewed as a formal power series with variables y±1/2, q, whose coefficients are
holomorphic vector bundles on X .

Analogously toDefinition 1, the integral
∫

X is extended linearly to the vector space
of formal power series whose coefficients are characteristic classes on X . Then with
q := exp(2π iτ) and y := exp(2π i z), the holomorphic Euler characteristic ofEq,−y ,

EX (τ, z) :=
∫

X

Td(X)ch(Eq,−y) ∈ y−D/2 · Z[[y±1, q]],

is the (geometric) elliptic genus of X .

By [60, 65, 97], the elliptic genus EX (τ, z) in fact yields a well-defined function
in τ ∈ Cwith�(τ ) > 0 and in z ∈ C. If X is a Calabi-Yau D-manifold, then EX (τ, z)
is a weak Jacobi form (with a character, if D is odd) of weight 0 and index D/2 [11].
In other words, with c := 3D the elliptic genus EX (τ, z) obeys the transformation
properties stated for E(τ, z) in Proposition 1, and it is bounded when τ → i∞.
One checks that by definition, the elliptic genus indeed is a topological invariant
which interpolates between the standard topological invariants of Eq. (16), namely

EX (τ, z)
τ→i∞−→ y−D/2χ−y(X) and

EX (τ, z = 0) = χ(X), EX (τ, z = 1/2) = (−1)D/2σ(X) + O(q),

q D/4EX (τ, z = (τ + 1)/2) = (−1)D/2χ(OX ) + O(q).
(18)

According to Witten [96, 97], the expression for the elliptic genus EX (τ, z) in
Definition 7 can be interpreted as a regularized version of a U (1)-equivariant index
of a Dirac-like operator on the loop space of X , see also [66]. This explains the
notation chosen in Definition 7, and it also motivates why one expects that for CFTs
which are obtained by a non-linear sigma model construction from some Calabi-Yau
D-manifold X , the conformal field theoretic elliptic genus of Definition 6 agrees
with the geometric elliptic genus of X as in Definition 7. Note that the resulting
equation

EX (τ, z) = StrHR

(
y J0q L0−c/24q L0−c/24

)
(19)
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would furnish a natural generalization of the McKean-Singer Formula [72]. While
non-linear sigma model constructions are not understood sufficiently well to even
attempt a general proof of this equation, there is some evidence for its truth. On the
one hand, as was pointed out in Sect. 2.3, N = (2, 2) superconformal field theories
obtained from a non-linear sigmamodel on a complex torus are verywell understood.
One confirms that their conformal field theoretic elliptic genus vanishes, as does the
geometric elliptic genus of a complex torus. Equation (19) is also compatible with the
construction of symmetric powers of the manifold X [25]. Moreover, compatibility
of the elliptic genus with orbifold constructions was proved in [12, 40]. Further
evidence in favor of the expectation (19) arises from a discussion of the chiral de
Rham complex, see Sect. 2.5.

2.5 The Chiral de Rham Complex

As was pointed out above, non-linear sigma model constructions of N = (2, 2)
superconformal field theories are in general not very well understood. Therefore,
a direct proof of the expected equality (19) is out of reach. However, instead of
a full-fledged superconformal field theory, in [70] the authors construct a sheaf of
superconformal vertex algebras, known as the chiral de Rham complex Ωch

X , on any
complex manifold X . The chiral de Rham complex of X is expected to be closely
related to the non-linear sigmamodel on X , as we shall discuss in the present section.

Let us begin by summarizing the construction of the chiral de Rham complex
Ωch

X for a complex D-dimensional manifold X , see [8, 56, 69, 70]. First, to any
coordinate neighborhood U ⊂ X with holomorphic coordinates (z1, . . . , zD) one
associates a bc − βγ system Ωch

X (U ) as in Example 3, see Sect. 2.1. Here, the even
fields a j , b j are interpreted as arising from quantizing the local sections ∂/∂z j , z j

of the sheaf of polyvector fields on X , while the odd fields φ j , ψ j correspond to the
local sections dz j , ∂/∂(dz j ) of the sheaf of differential operators on the de Rham
algebra of differential forms. Indeed, by (3) the map

(∂/∂z j , z j , dz j , ∂/∂(dz j )) �−→ (a j
0 , b j

0 , φ
j
0 , ψ

j
0 )

induces a super-Lie algebra homomorphism.
According to [70], coordinate transforms on X induce corresponding transfor-

mation rules for the fields a j , b j , φ j , ψ j which are compatible with the structure
of the bc − βγ -system as discussed in Example 3. This allows to glue the Ωch

X (U )

accordingly, and by localization, one indeed obtains a well-defined sheaf of vertex
algebras over X , with a (non-associative) action of OX on it.

A key result of [70] is the fact that under appropriate assumptions on X , there
are well-defined global sections of the sheaf EndC(Ωch

X )[[z±1]], which are locally
given by the fields (4), (5) of the topological N = 2 superconformal algebra (6)–(7)
discussed in Example 4 of Sect. 2.1:
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Theorem 2 ([70]) Let X denote a compact complex manifold of dimension D. As
discussed above, there is an associated sheaf Ωch

X of vertex algebras on X. On every
holomorphic coordinate chart U ⊂ X, let T top(z), J (z), Q(z), G(z) denote the
local sections in EndC(Ωch

X (U ))[[z±1]] defined by (4), (5), with mode expansions

T top(z) =
∑

n

L top
n zn−2, J (z) =

∑

n

Jnzn−1,

Q(z) =
∑

n

Qnzn−1, G(z) =
∑

n

Gnzn−2,

respectively. Then the following holds:

1. The linear operators F := J0 and dch
dR := −Q0 are globally well-defined. More-

over, F defines a Z-grading on Ωch
X , while (dch

dR)2 = 0, such that

∀p ∈ Z : Ω
ch,p
X (U ) :=

{
� ∈ Ωch

X (U ) | F� = p�
}

yields a complex (Ω
ch,•
X , dch

dR), which is called the chiral de Rham complex.

2. The map (z j , dz j ) �→ (b j
0 , φ

j
0 ) induces a quasi-isomorphism from the usual de

Rham complex to the chiral de Rham complex of X.
3. The local fields T top(z) given in (4) define a global field on the chiral de Rham

complex, by which we mean a global section of the sheaf EndC(Ωch
X )[[z±1]]. The

chiral de Rham complex therefore is bigraded by F and L top
0 .

4. If X is a Calabi-Yau manifold, then the local fields J (z), Q(z), G(z) given in (5)
also define global fields on the chiral de Rham complex.

As mentioned above, the sheaf Ωch
X is not quasi-coherent. However, it has a

filtration which is compatible with the bigrading of Theorem 2 and such that the
corresponding graded object yields a quasi-coherent sheaf isomorphic to (the sheaf
of sections of) (−y)D/2

Eq,y as in Definition 7. This is used extensively in [10,
11] to study the C̆ech cohomology H∗(X,Ωch

X ). Note that this means classical C̆ech
cohomology, ignoring the differentialdch

dR of the chiral deRhamcomplex.The authors
find:

Theorem 3 ([10, 11]) Consider a Calabi-Yau D-manifold X, and the C̆ech coho-
mology H∗(X,Ωch

X ) of its chiral de Rham complex Ωch
X . Equip it with the induced

bigrading by the operators F = J0 and L top
0 of Theorem 2 and the Z2-grading by

(−1)F+q on Hq(X,Ωch
X ). Then H∗(X,Ωch

X ) carries a natural structure of a topolog-
ical N = 2 superconformal vertex algebra [10, Proposition 3.7 and Definition 4.1].
Moreover [11], the graded Euler characteristic of the chiral de Rham com-

plex, that is, the supertrace of the operator y−D/2 ·(y J0q L top
0 ) on H∗(X,Ωch

X ), yields
the elliptic genus EX (τ, z) of Definition 7.

Thus Theorem 3 indicates a possible relationship between the chiral de Rham
complex Ωch

X of a Calabi-Yau D-manifold X and a non-linear sigma model on X ,
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since it recovers the (geometric!) elliptic genus EX (τ, z) by means of a supertrace
which at least in spirit agrees with the expression on the right hand side of Eq. (19).
Note that L top

0 = L0 − 1
2 J0 by (8) [using Definition 1 and (11)]. Therefore, using

the fact that the elliptic genus is holomorphic, along with the spectral flow (13), the
conformal field theoretic elliptic genus of Definition 6 can be expressed as

E(τ, z) = StrHR

(
y J0q L0−c/24

)

= y−c/6StrHN S

(
(yq−1/2)J0q L0

)
= y−c/6StrHN S

(
y J0q L top

0

)
.

Hence recalling c = 3D for a non-linear sigma model on a Calabi-Yau D-
manifold, one is led to conjecture that one might be able to identify an appropriate
cohomology of H

N S with H∗(X,Ωch
X ).

The details of such an identification are still more subtle, however. Indeed, by
construction, the chiral de Rham complex depends only on the complex structure of
X , while the non-linear sigmamodel, in addition, depends on the complexifiedKähler
structure of X . It is therefore natural to expect the vertex algebra of Theorem3 to yield
a truncated version of the non-linear sigma model by means of the topological twists
mentioned in Example 5 of Sect. 2.1. Since the crucial bundle Eq,−y of Definition
7 resembles an infinite-dimensional Fock space, while the traditional topological
A- and B-twists yield finite dimensional spaces of states, the so-called half-twisted
sigma model according to Witten [99] is the most natural candidate. It still cannot
yield the vertex algebra of Theorem 3, since it depends both on the complex and
on the complexified Kähler structure of X . Moreover, the C̆ech resolution, which is
implicit in H∗(X,Ωch

X ), does not resemble the standard features of non-linear sigma
models on X . According to Kapustin, however, a large volume limit of Witten’s half
twisted sigma model on X yields the cohomology of Ωch

X with respect to yet another
resolution of the complex, the so-called Dolbeault resolution [62] .

3 Conformal Field Theory on K3

As emphasized repeatedly, non-linear sigma model constructions are in general
not well understood, except for the toroidal conformal field theories presented in
Sect. 2.3. Recall however that there are only two topologically distinct types of
Calabi-Yau 2-manifolds, namely the complex 2-tori and the K3 surfaces (see e.g.
[6, Chap.VIII] for an excellent introduction to the geometry of K3 surfaces). By the
Kummer construction, one obtains an example of a K3 surface by means of a Z2-
orbifold procedure from every complex 2-torus. On the other hand, Z2-orbifolds of
the toroidal CFTs are also reasonably well understood. One therefore expects to be
able to construct examples of CFTs which allow a non-linear sigma model interpre-
tation on some K3 surface. Compared to CFTs on higher-dimensional Calabi-Yau
D-manifolds, those on K3 surfaces indeed provide a borderline case, in the sense
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that much more is known about these so-called K3 theories. Most importantly, we
can give a mathematical definition of such theories without ever mentioning non-
linear sigma model constructions. The current section presents this definition and
summarizes some of the known properties of K3 theories.

Tomotivate the mathematical definition of K3 theories, let us recall the conformal
field theoretic elliptic genus of Sect. 2.4. Here we assume that we are given an N =
(2, 2) superconformal field theory that obeys the following conditions, which are
necessary for the CFT to allow a non-linear sigma model interpretation on some
Calabi-Yau 2-manifold: The theory is superconformal at central charges c = 6, c =
6 with space-time supersymmetry, and such that all eigenvalues of J0 and J 0 are
integral. This latter condition is equivalent to the assumption that in addition to the
spectral flow operator of Ingredient IV in Sect. 2.2, the theory possesses a quartet of
two-fold left- and right-handed spectral flow operators Θ±, Θ

±
. By this we mean

that these operators act analogously to Θ±2 on the space of states, with Θ as in (13),
namely

[L0,Θ
±] = c

6Θ
± ∓ Θ± ◦ J0, [J0,Θ±] = ∓ c

3Θ
±,

[L0,Θ
±] = c

6Θ
± ∓ Θ

± ◦ J 0, [J 0,Θ
±] = ∓ c

3Θ
±
,

but with all other commutators vanishing. The fields associated to Θ±Ω, Θ
±
Ω by

the state-field correspondence (Definition 3) are denoted J±(z) and J
±
(z), respec-

tively. By Proposition 1, the conformal field theoretic elliptic genus E(τ, z) of such
a CFT is a weak Jacobi form of weight 0 and index 1. However, the space of such
Jacobi forms is one-dimensional, as follows from the methods introduced in [36]
(see [11] or [92, Theorem. 3.1.12] for direct proofs). According to the discussion
that follows Definition 7, the (geometric) elliptic genus EK3(τ, z) of a K3 surface
is a weak Jacobi form of weight 0 and index 1 as well, which by (18) is non-zero,
since EK3(τ, z = 0) = χ(K3) = 24. The precise form of the function EK3(τ, z) is
well-known, and we obtain

E(τ, z) = a · EK3(τ, z) = a ·
(
2y + 20 + 2y−1 + O(q)

)
(20)

for some constant a. In fact,

Proposition 2 ([92, Sect. 7.1]) Consider an N = (2, 2) superconformal field theory
at central charges c = 6, c = 6 with space-time supersymmetry and such that all
the eigenvalues of J0 and of J 0 are integral.

1. The elliptic genus of this CFT either vanishes, or it agrees with the geometric
elliptic genus EK3(τ, z) of a K3 surface.

2. The conformal field theoretic elliptic genus vanishes if and only if the theory is a
toroidal N = (2, 2) superconformal field theory according to Definition 5.

This result is mentioned in [75] and proved in [92, Sect. 7.1], where the proof
however contains a few typos. The sketch of a corrected proof is banned to the
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Appendix, since it uses a number of properties of superconformal field theories with
space-time supersymmetry which are well-known to the experts, but which we have
not derived in this exposition.

While as mentioned before, the toroidal N = (2, 2) superconformal field theories
are well understood, it is also not hard to find examples of theories whose conformal
field theoretic elliptic genus is EK3(τ, z), see [30]. In particular, the authors of [30]
prove that the standard Z2-orbifold of every toroidal N = (2, 2) superconformal
field theory at central charges c = 6, c = 6 yields such an example. By the above
this is in accord with the expectations based on the Kummer construction, hence our

Definition 8 A superconformal field theory is called a K3 theory, if the following
conditions hold: The CFT is an N = (2, 2) superconformal field theory at central
charges c = 6, c = 6 with space-time supersymmetry, all the eigenvalues of J0 and
of J 0 are integral, and the conformal field theoretic elliptic genus of the theory is

E(τ, z) = EK3(τ, z).

Possibly, every K3 theory allows a non-linear sigmamodel interpretation on some
K3 surface, however a proof is far out of reach. Nevertheless, under standard assump-
tions on the deformation theory of such theories it is possible to determine the form of
every connected component of themoduli space ofK3 theories. Namely, one assumes
that all deformations by so-called marginal operators are integrable for these theo-
ries, an assumption which can be justified in string theory and which is demonstrated
to all orders of perturbation theory in [26]. Then, based on the previous results [18,
83], one obtains

Theorem 4 ([3, 75]) With the notations introduced in Theorem 1, let T 4,20 denote
the Grassmannian of maximal positive definite oriented subspaces of R

4,20,

T 4,20 := O+(4, 20; R)/SO(4) × O(20).

By T 4,20
0 ⊂ T 4,20 we denote the set of all those maximal positive definite oriented

subspaces x ⊂ R
4,20 which have the property that x⊥ does not contain any roots,

that is, all α ∈ x⊥ ∩ Z
4,20 obey 〈α, α〉 �= −2.

If the above-mentioned assumptions on deformations of K3 theories hold, namely
that all deformations by so-called marginal operators are integrable, then each con-
nected component MK3

s of the moduli space of K3 theories has the following form:

MK3
s = O+(4, 20; Z)\T 4,20

0 .

This result reinforces the expectation that one connected componentMK3
σ of the

moduli space of K3 theories can be identified with the space of non-linear sigma
models on K3 surfaces, since in addition, we have

Proposition 3 ([3]) The partial completion T 4,20 of the smooth universal covering
space T 4,20

0 of MK3
s can be isometrically identified with the parameter space of
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non- linear sigma models on K3. Namely, denoting by X the diffeomorphism
type of a K3 surface, T 4,20 is a cover of the space of triples (�, V, B) where �

denotes a hyperkähler structure on X, V ∈ R
+ is interpreted as the volume

of X, and B is the de Rham cohomology class of a real closed two-form on X, a
so-called B- field.

If a K3 theory in MK3
s lifts to a point in T 4,20 which is mapped to the triple

(�, V, B), then (�, V, B) is called a geometric interpretation of the K3
theory.

In [75, 93] it is shown that the expectation that non-linear sigma models on K3
yield K3 theories indeed is compatible with orbifold constructions, more precisely
with every orbifold construction of a K3 surface from a complex two-torus by means
of a discrete subgroup of SU(2). As mentioned above, one might conversely expect
that every K3 theory with geometric interpretation (�, V, B) can be constructed as
a non-linear sigma model on a K3 surface, specified by the data (�, V, B) – at least
the existence of a non-linear sigma model interpretation has not been disproved for
any K3 theory, so far.

The statement of Proposition 3 makes use of the fact that every K3 surface is a
hyperkähler manifold. The analogous statement for K3 theories is the observation
that the two commuting copies of N = 2 superconformal algebras (9)–(10) are
each extended to an N = 4 superconformal algebra in these theories. This is a
direct consequence of our Definition 8 of K3 theories. Indeed, as mentioned at the
beginning of this section, the assumption of space-time supersymmetry together with
the integrality of the eigenvalues of J0 and J 0 imply that the fields J±(z), J

±
(z)

corresponding to two-fold left- and right-handed spectral flow are fields of the CFT.
One checks that at central charges c = 6, c = 6, these fields create states in the
subspaces W1 and W 1 of the vector spaces underlying the chiral algebras of Property
C (see the vacuum axiom in Definition 3), whose J0- (respectively J 0-) eigenvalues
are ±2. Moreover, with the U (1)-currents J (z), J (z) of the two commuting copies
of N = 2 superconformal vertex algebras, the fields J±(z), J

±
(z) generate two

commuting copies of a so-called su(2)1-current algebra, which in turn is known to
extend the N = 2 superconformal algebra to an N = 4 superconformal algebra [1].

The characters of the irreducible unitary representations of the N = 4 super-
conformal algebra at arbitrary central charges have been determined in [31–34, 84].
Their transformation properties under modular transforms in general are not mod-
ular, in contrast to the situation at lower supersymmetry, where an infinite class of
characters of irreducible unitary representations does enjoy modularity. Instead, the
N = 4 characters exhibit a so-called Mock modular behavior, see e.g. [22] for a
recent account. Since in the context of non-linear sigma models, N = 4 supersym-
metry is linked to the geometric concept of hyperkähler manifolds [2], this seems
to point towards a connection between Mock modularity and hyperkähler geometry.
The nature of this connection however, to date, is completely mysterious.
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4 The Elliptic Genus of K3

Recall that the elliptic genus EK3(τ, z) of K3 plays center stage in our Definition 8
of K3 theories. Though this function is explicitly known and well understood, recent
years have uncovered a number of mysteries around it. In the present section, some
of these mysteries are discussed. This involves more open than solved problems,
and as a reminder, the titles of all the following subsections are questions instead of
statements.

4.1 A Non-geometric Decomposition of the Elliptic Genus?

As was mentioned at the end of Sect. 3, our very Definition 8 ensures that every K3
theory enjoys N = (4, 4) supersymmetry. The current section summarizes how this
induces a decomposition of the function EK3(τ, z), which is a priori not motivated
geometrically and which turns out to bear some intriguing surprises.

In what follows, assume that we are given a K3 theory according to Definition
8 with space of states H = H

N S ⊕ H
R. Both H

N S and H
R can be decomposed

into direct sums of irreducible unitary representations with respect to the N = (4, 4)
superconformal symmetry. According to [31, 32], there are three types of irreducible
unitary representations of the N = 4 superconformal algebra at central charge c = 6,
namely the vacuum representation, the massless matter representation, and finally
the massive matter representations which form a one-parameter family indexed by
h ∈ R>0. For later convenience we focus on the Ramond-sector H

R of our theory
and denote the respective irreducible unitary representations by H0,Hmm,Hh (h ∈
R>0). This notation alludes to the properties of the corresponding representations
in the Neveu-Schwarz sector H

N S , which are related to the representations in H
R

by spectral flow Θ according to (13). Indeed, the vacuum representation in the NS-
sector has the vacuum Ω as its ground state. The massive matter representations are
characterized by the spontaneous breaking of supersymmetry at every mass level,
including the ground state [95].

Setting y = exp(2π i z) and q = exp(2π iτ) for z, τ ∈ C with �(τ ) > 0 as
before and using c/24 = 1/4, the characters of the irreducible unitary N = 4
representations that are relevant to our discussion are denoted by

χa(τ, z) := StrHa

(
y J0q L0−1/4

)
= TrHa

(
(−1)J0 y J0q L0−1/4

)
, a ∈ R≥0 ∪{mm}.

These functions have been determined explicitly in [32]. For our purposes, only the
following properties are relevant,
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χ0(τ, z = 0) = −2, χmm(τ, z = 0) = 1,
∀h > 0 : χh(τ, z) = qh χ̂(τ, z) with χ̂ (τ, z) = χ0(τ, z) + 2χmm(τ, z),

hence χh(τ, z = 0) = χ̂ (τ, z = 0) = 0.
(21)

The constant χa(τ, z = 0) yields the so-called Witten index [95] of the respective
representation.

The most general ansatz for a decomposition of H
R into irreducible representa-

tions of the two commuting N = 4 superconformal algebras therefore reads

H
R =

⊕

a, a∈R≥0∪{mm}
ma,aHa ⊗ Ha

with appropriate non-negative integers ma,a . Then

TrHR

(
(−1)J0−J 0 y J0 y J 0q L0−1/4q L0−1/4

)
=

∑

a, a∈R≥0∪{mm}
ma,a ·χa(τ, z)·χa(τ, z),

together with Definition 6 yields the conformal field theoretic elliptic genus of our
CFT as

E(τ, z) =
∑

a, a∈R≥0∪{mm}
ma,a · χa(τ, z) · χa(τ, z = 0). (22)

This expression simplifies dramatically on insertion of (21). In addition, the known
properties of K3 theories impose a number of constraints on the coefficients ma,a .
First, since under spectral flow, H0 is mapped to the irreducible representation
of the N = 4 superconformal algebra whose ground state is the vacuum Ω , the
uniqueness of the vacuum (see Property C) implies m0,0 = 1. Moreover, from the
proof of Proposition 2 (see the Appendix) or from the known explicit form (20)
of E(τ, z), we deduce that in every K3 theory, m0,mm = mmm,0 = 0. Finally,
according to the discussion of Property B in Sect. 2.2, Hh,h ∩ Hb can only be non-

trivial if h − h ∈ Z, which on Hh,h ∩ H f ∩ H
N S generalizes to h − h ∈ 1

2 + Z.
Since the groundstates of H0, Hmm, Hh under spectral flow yield states with L0-
eigenvalues 0, 1

2 , h, and J0-eigenvalues 0, ±1, 0, respectively [32], this implies
that m0,h, mmm,h, mh,0, mh,mm with h, h > 0 can only be non-zero if h, h ∈ N.

In conclusion, we obtain a refined ansatz for the N = (4, 4) decomposition of H
R ,

H
R = H0 ⊗ H0 ⊕ h1,1Hmm ⊗ Hmm ⊕

⊕

h, h∈R>0

kh,hHh ⊗ Hh

⊕
∞⊕

n=1

[
fnHn ⊗ H0 ⊕ fnH0 ⊗ Hn

]

⊕
∞⊕

n=1

[
gnHn ⊗ Hmm ⊕ gnHmm ⊗ Hn

]
.

(23)
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Here, all the coefficients h1,1, kh,h, fn, f n, gn, gn are non-negative integers,whose
precise values depend on the specific K3 theory under inspection.

By (22), and inserting (21) and the refined ansatz (23), we obtain

E(τ, z) = −2χ0(τ, z) + h1,1χmm(τ, z) +
∞∑

n=1

[−2 fn + gn]χn(τ, z)

= −2χ0(τ, z) + h1,1χmm(τ, z) + e(τ ) χ̂(τ, z) with e(τ ) :=
∞∑

n=1

[gn − 2 fn] qn .

Now recall from Definition 8 that E(τ, z) = EK3(τ, z), where by the discussion
preceding (20) we have EK3(τ, z = 0) = 24. Using (21), this implies h1,1 = 20.
Since the geometric elliptic genus EK3(τ, z) is a topological invariant of all K3
surfaces, we conclude

Proposition 4 The elliptic genus EK3(τ, z) of K3 decomposes into the characters
of irreducible unitary representations of the N = 4 superconformal algebra in the
Ramond sector according to

EK3(τ, z) = −2χ0(τ, z) + 20χmm(τ, z) + e(τ ) χ̂(τ, z),

where e(τ ) :=
∞∑

n=1

[gn − 2 fn] qn,

and the coefficients gn, fn give the respective multiplicities of representations in the
decomposition (23). While the values of gn, fn vary within the moduli space of K3
theories, the coefficients gn − 2 fn of e(τ ) are invariant.

A decomposition of EK3(τ, z) in the spirit of Proposition 4 was already given in
[30]. In [77] and independently in [92, Conjecture7.2.2] it was conjectured that all
coefficients of the function e(τ ) are non-negative, for the following reason:Recall that
under spectral flow, the irreducible representationH0 is mapped to the representation
of the N = 4 superconformal algebrawhose ground state is the vacuumΩ . Therefore,
in (23), the coefficients fn determine those contributions to the subspace Wn ⊂ W
of the vector space underlying the chiral algebra of Property C that do not belong to
the vacuum representation under the N = (4, 4) supersymmetry. For any fixed value
of n ∈ N with n > 0, we generically expect no such additional contributions to Wn .
In other words, we expect that generically fn = 0 and thus that the nth coefficient of
e(τ ) agrees with gn ≥ 0. Since these coefficients are invariant on the moduli space
of K3 theories, they should always be non-negative.

The conjectured positivity of the coefficients gn −2 fn is proved in [27, 29] in the
context of an intriguing observation. Namely, in [29], Eguchi, Ooguri and Tachikawa
observe that each of these coefficients seems to give the dimension of a representation
of a certain sporadic group, namely of the Mathieu group M24. For small values of n,
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they find dimensions of irreducible representations, while at higher order, more work
is required to arrive at a well-defined conjecture. The quest for understanding this
observation, which is often referred to as Mathieu Moonshine, has sparked enormous
interest in the mathematical physics community. Building on results of [19, 28, 44,
45], the observation has been recently verified by Gannon in the following form:

Theorem 5 ([50]) There are virtual representations of the Mathieu group M24 on
spaces R0, Rmm, and true representations on spaces Rn, n ∈ N>0, such that

R := H0 ⊗ R0 ⊕ Hmm ⊗ Rmm ⊕
∞⊕

n=1

Hn ⊗ Rn

has the following properties: With the N = 4 superconformal algebra acting non-
trivially only on the first factor in each summand of R, and the Mathieu group M24
acting non-trivially only on the second factor, one obtains functions

∀g ∈ M24 : Eg(τ, z) := TrR
(

gy J0q L0−1/4
)

which under modular transformations generate a collection ofM24-twisted ellip-
tic genera of K3. In particular, Eid(τ, z) = EK3(τ, z).

4.2 A Geometric Mathieu Moonshine Phenomenon?

While Theorem 5 beautifully specifies a well-defined formulation of the Mathieu
Moonshine observation and proves it, the proof does not offer any insight into the
role of the Mathieu group M24 in the context of K3 theories. The present section
summarizes some ideas for a possible interpretation that is based in geometry.

Indeed, the relevance of the group M24 for the geometry of K3 surfaces had been
discovered much earlier by Mukai:

Theorem 6 ([73]) Let G denote a finite group of symplectic automorphisms
of a K3 surface X. By this we mean that X denotes a K3 surface whose complex
structure has been fixed, and that G is a finite group of biholomorphic maps on X
whose induced action on the holomorphic volume form is trivial.

Then G is a subgroup of the Mathieu group M24. More precisely, G is a subgroup
of one out of a list of 11 subgroups of M23 ⊂ M24, the largest of which has order
960.

Hence although M24 does play a crucial role in describing symplectic automor-
phisms of K3 surfaces, Theorem 6 cannot immediately explain Mathieu Moonshine.
Indeed, Mathieu Moonshine suggests that there is an action of the entire group M24
on some mathematical object which underlies the elliptic genus of K3, while Theo-
rem 6 implies that no K3 surface allows M24 as its symplectic automorphism group.
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Namely, the theorem states that the maximal order of a symplectic automorphism
group of any K3 surface is 960, which is smaller by orders of magnitude than the
order 244.823.040 of M24.

Since the non-geometric decomposition of EK3(τ, z) by means of N = 4 super-
symmetry presented in Sect. 4.1 led to the discovery ofMathieuMoonshine, onemay
suspect that rather than the properties of K3 surfaces, the properties of K3 theories
should explain the Mathieu Moonshine phenomena. However, symmetry groups of
K3 theories, in general, need not be subgroups of M24, as apparently was first noted
independently by the authors of [29, 85]. Conversely, no K3 theory can have M24 as
its symmetry group, as follows from [46], where Gaberdiel, Hohenegger and Volpato
generalize a very enlightening second proof of Theorem 6 due to Kondo [64] to a
classification result for symmetries of K3 theories.

Because by the above, the symmetries of K3 theories seem not to explainMathieu
Moonshine, in a series of papers [85–87] it has been argued that possibly, the action
of M24 arises as a combined action of all finite symplectic symmetry groups of K3
surfaces. This idea can be motivated by the mathematical properties of the elliptic
genus which were presented in Sects. 2.4 and 2.5:

By Theorem 3, the geometric elliptic genus EK3(τ, z) is recovered from the chiral
de Rham complex Ωch

X of a K3 surface X as its graded Euler characteristic, that is,
as the supertrace of the appropriate operator on the C̆ech cohomology H∗(X,Ωch

X ).
In accord with [56, (2.1.3)], one can expect that every symplectic automorphism of
a K3 surface X induces an action on H∗(X,Ωch

X ). Therefore, the C̆ech cohomology
H∗(K3,Ωch

K3) of the chiral de Rham complex appears to be an excellent candidate for
the desired mathematical object which both underlies the elliptic genus, and which
carries actions of all finite symplectic automorphism groups of K3 surfaces, thus
combining them to the action of a possibly larger group.

Note that according to Theorem 3, there exists a natural structure of a vertex alge-
bra on H∗(K3,Ωch

K3). This additional structure on the mathematical object which
underlies the elliptic genus is in complete accord with the implications of Theorem
5. Indeed, it was already conjectured in [47, 48], thatMathieuMoonshine is governed
by some vertex algebra which carries an M24-action, whose properties would imme-
diately induce the modular transformation properties of the twisted elliptic genera of
Theorem 5. As was argued in the discussion of Theorem 3, H∗(X,Ωch

X ) is moreover
expected to be related to a non-linear sigma model on X , at least in a large volume
limit, providing the desired link to K3 theories. Indeed, the required compatibility
with a large volume limit might also explain the restriction to those symmetries of K3
theories which can be induced by some symplectic automorphism of a K3 surface,
as seems to be the case for the generators of M24 in Mathieu Moonshine.

Unfortunately, despite all its convincing properties promoting it to an excellent
candidate to resolveMathieuMoonshine, the vertex algebra structure of H∗(X,Ωch

X )

is notoriously hard to calculate, as are the precise properties of general non-linear
sigma models on K3, even in a large volume limit. Therefore, these ideas remain
conjectural, so far. Sadly, known alternative constructions for vertex algebras that
underlie the elliptic genus and that are easier to calculate seem not to explainMathieu
Moonshine [21].
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A possible mechanism of combining symplectic automorphism groups of distinct
K3 surfaces to larger groups is presented in [85, 87], and the following result can be
seen as evidence in favor of these ideas:

Proposition 5 ([86]) Consider the “smallest massive” representation of M24 that
occurs in Theorem 5, that is, the representation on R1.

The space R1 is isomorphic to a certain vector space V C FT of states which is
common to all K3 theories that are obtained by a standard Z2-orbifold construction
from a toroidal N = (2, 2) superconformal field theory. Moreover, on V C FT , the
combined action of all finite symplectic automorphism groups of Kummer surfaces
induces a faithful action of the maximal subgroup Z

4
2 � A8 of order 322.560 in M24.

The resulting representation on V C FT is equivalent to the representation of Z
4
2 � A8

on R1 which is induced by restriction from M24 to this subgroup.

This result is the first piece of evidence in the literature for any trace of an M24-
action on a space of states of a K3 theory. It is remarkable that the CFT techniques
produce precisely the representation of a maximal subgroup of M24 which is pre-
dicted by Mathieu Moonshine according to the idea of “combining symplectic auto-
morphism groups”. Note that the group Z

4
2 � A8 is not a subgroup of M23, indicating

that indeed M24 rather than M23 should be expected to be responsible for Mathieu
Moonshine, despite Theorem 6, by which all finite symplectic automorphism groups
of K3 surfaces are subgroups of M23. This preference for M24 to M23 is in accord
with the findings of [50].

Encouraged by Proposition 5, one may hope that in a large volume limit, V C FT

can be identified with a subspace of H∗(K3,Ωch
K3), inducing an equivalence of vertex

algebras. Furthermore, by combining the action of Z
4
2 � A8 with the action of finite

symplectic automorphism groups of K3 surfaces which are not Kummer, one may
hope to generate an action of the entire group M24. Finally, one may hope that this
result generalizes to the remaining representations onRn , n > 1, found in Theorem
5. In conclusion, there is certainly much work left.

4.3 A Geometric Decomposition of the Elliptic Genus?

Even if the ideas presented in Sect. 4.2 prove successful, then so far, they give no
indication for the reason for M24 -of all groups- to arise from the combined action of
finite symplectic automorphism groups of K3 surfaces. Circumventing this intrinsic
problem, the current section presents a simpler conjecture which can be formulated
independently of Mathieu Moonshine. If true, however, it could serve as a step
towards understanding Mathieu Moonshine.

Taking the idea seriously that there should be a purely geometric explanation for
Mathieu Moonshine, one main obstacle to unraveling its mysteries is the lack of
geometric interpretation for the non-geometric decomposition of EK3(τ, z) stated in
Proposition4,which is at the heart of the discoveryofMathieuMoonshine.Recall that
the derivation of Proposition 4 rests on the identification (19) of the geometric elliptic
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genus of a Calabi-Yau D-manifold X with the conformal field theoretic elliptic genus
of a CFT that is obtained from X by a non-linear sigma model construction. We have
incorporated this identification into our Definition 8, and it is the motivation for
decomposing the geometric elliptic genus of K3 into the characters of irreducible
unitary representations of the N = 4 superconformal algebra at central charge c = 6.
While the conformal field theoretic elliptic genus by Definition 6 is obtained as a
trace over the space of states H

R , the geometric elliptic genus by Definition 7 is an
analytic trace over a formal power series Eq,−y whose coefficients are holomorphic
vector bundles on our K3 surface. The decomposition of the space of states H

R of
every K3 theory by N = (4, 4) supersymmetry which was performed in Sect. 4.1
to derive Proposition 4 should accordingly be counterfeited by a decomposition of
Eq,−y . We thus expect

Conjecture 1 Let X denote a K3 surface with holomorphic tangent bundle T :=
T 1,0X, and consider Eq,−y as in Definition 7. Furthermore, let e(τ ) denote the
function defined in Proposition 4. Then there are polynomials pn, n ∈ N>0, such
that

Eq,−y = −OX · χ0(τ, z) + T · χmm(τ, z) +
∞∑

n=1

pn(T ) · qnχ̂(τ, z),

and e(τ ) =
∞∑

n=1

(∫

X
Td(X)pn(T ))

)
· qn,

where pk(T ) =
Nk∑

n=0
anT ⊗n if pk(x) =

Nk∑
n=0

an xn, and where T ⊗0 = OX is under-

stood.

If (19) is interpreted as a generalization of the McKean-Singer Formula, as indi-
cated in the discussion of that equation, then Conjecture 1 can be viewed as a general-
ization of a local index theorem [4, 51, 52, 80]. Note that the conjecture is formulated
without even alluding to Mathieu Moonshine, so it may be of independent interest.
If true, then for each n ∈ N>0, every finite symplectic automorphism group of a K3
surface X naturally acts on pn(T ), and one may hope that this will yield insight into
the descent of this action to the representation of M24 on Rn which was found in
Theorem 5.
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Appendix—Proof of Proposition 2 in Sect. 3

The entire proof of Proposition 2 rests on the study of the +1-eigenspace of the
linear operator J 0 on the subspace W 1/2 of the vector space W underlying the chiral
algebra. First, one shows that this eigenspace is either trivial or two-dimensional,
and from this one deduces claim 1. of the proposition. One direction of claim 2. is
checked by direct calculation, using the defining properties of toroidal N = (2, 2)
superconformal field theories. To obtain the converse, one shows that E(τ, z) ≡ 0
implies that an antiholomorphic counterpart of the conformal field theoretic elliptic
genus must vanish as well, from which claim 2 is shown to follow.

1. Assume that the space W 1/2 contains an eigenvector of J 0 with eigenvalue +1.

We denote the field associated to this state by ψ
+
1 (z). The properties of the

real structure on the space of states H of our CFT imply that there is a com-
plex conjugate state with J 0-eigenvalue −1 whose associated field we denote
by ψ

−
1 (z). The properties of unitary irreducible representations of the Vira-

soro algebra imply that these fields form a Dirac fermion [see the discussion
around (15)], and that therefore J 1(z) := 1

2 :ψ+
1 ψ

−
1 :(z) is a U (1)-current as in

Example 1 in Sect. 2.1. By a procedure known as GKO-construction [54], one
obtains J (z) = J 1(z) + J 2(z) for the field J (z) in the N = 2 superconfor-
mal algebra (9)–(10), and J k(z) = i∂ Hk(z) with ψ

±
1 (z) =: e±i H1 : (z). The

fields of twofold right-handed spectral flow, which by assumption are fields of
the theory, are moreover given by J

±
(z) =: e±i(H1+H2) :(z). Their OPEs with

the ψ
±
1 (z) yield an additional Dirac-fermion, with fields ψ

±
2 (z) :=:e±i H2:(z) in

the CFT. This proves that the ±1-eigenspaces of J 0 on W 1/2 each are precisely
two-dimensional, since by the same argument no further Dirac fermions can be
fields of the theory. Note that by definition, the corresponding states belong to
the sector H f ∩ H

N S ⊂ H of the space of states of our theory.
In summary, the +1-eigenspace of the linear operator J 0 on W 1/2 is either trivial
or two-dimensional.

We now study the leading order contributions in the conformal field theoretic
elliptic genus E(τ, z) of our theory. From (20) and by the very Definition 6 we
deduce that 2ay−1 counts states in the subspace V ⊂ H

R where L0, L0 both take
eigenvalue c

24 = 1
4 = c

24 and J0 takes eigenvalue −1. More precisely,
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2a = TrV
(
(−1)J0−J 0

)
= −TrV

(
(−1)J 0

)
.

As follows from properties of the so-called chiral ring, see e.g. [92, Sect. 3.1.1],
a basis of V is obtained by spectral flow Θ (see Ingredient IV in Sect. 2.2) from
(i) the vacuum Ω , (ii) the state whose corresponding field is J

+
(z), and (iii) a

basis of the +1-eigenspace of the linear operator J 0 on W 1/2. Since according
to (13), the eigenvalues of J 0 after spectral flow to V are (i) −1, (ii) +1, (iii) 0,
the above trace vanishes if the +1-eigenspace of the linear operator J 0 on W 1/2
is two-dimensional, implying 2a = 0, and if this eigenspace is trivial, then we
obtain 2a = 2.
In conclusion, the conformal field theoretic elliptic genus of our theory either
vanishes, in which case the +1-eigenspace of the linear operator J 0 on W 1/2 is
created by two Dirac fermions, or E(τ, z) = EK3(τ, z). ��

2. a. Using the details of toroidal N = (2, 2) superconformal field theories that
are summarized in Sect. 2.3, one checks by a direct calculation that the
conformal field theoretic elliptic genus of all such theories vanishes. ��

b. To show the converse, first observe that in our discussion of N = (2, 2)
superconformal field theories, the two commuting copies of a superconfor-
mal algebra are mostly treated on an equal level. However, the Definition 6
breaks this symmetry, and

E(τ , z) := TrHR

(
(−1)J0−J 0 y J 0q L0−c/24q L0−c/24

)

should define an equally important antiholomorphic counterpart of the con-
formal field theoretic elliptic genus. In our case by the same reasoning as
for E(τ, z), it must yield zero or EK3(τ, z). Note that Proposition 1 implies
that

E(τ, z = 0) = E(τ , z = 0)

is a constant,which in fact is knownas theWitten index [95–97]. In particular,
by (18)wehaveEK3(τ, z = 0) = 24, henceE(τ, z) ≡ 0 impliesE(τ , z) ≡ 0.
It remains to be shown that our theory is a toroidal theory according to
Definition 5 in this case.
But Step 1. of our proof then implies that the +1-eigenspace of the linear
operator J 0 on W 1/2 is created by twoDirac fermions and that the analogous
statement holds for the +1-eigenspace of the linear operator J0 on W1/2.

Hence we have Dirac fermions ψ±
k (z) and ψ

±
k (z), k ∈ {1, 2}, with OPEs

as in (15). Compatibility with supersymmetry then implies that the super-
partners of these fields yield the two u(1)4-current algebras, as is required
in order to identify our theory as a toroidal one. ��
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