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1. Introduction

1.1. Basic Examples and Definitions.
Example The Harmonic Oscillator has the following equation
d*x 9
which can also be written as
() +wir =0
where z is the dependent variable, ¢ is the independent variable and w is the parameter. We differentiate
dependent variables with respect to independent ones, and anything left over is a parameter.
DEFINITION 1.1. A differential equation is called ordinary if there is one independent variable

It is called partial if there is more than one independent variable. A scalar equation or system of equations has
one dependent variable. A vector equation/system has more.
Usually, number of dependent variables equals the number of equations.

Example Maxwell's Equations have 6 dependent variable and 8 independent variables.
DEFINITION 1.2. The order of a differential equation is the order of the highest derivative.

Eg, (327;” + w?z = 0 has Order 2.
Example

dz dv 9
(2) E—vf(),a—i-wxfo
which is a first order system, with dependent variables x and v, independent variable ¢ and parameter 1. This
system is equivalent to the harmonic oscillator.
If x and v are solutions to (2) then z is a solution of (1). Similarly, if = is a solution of (1) then =z, % = v are
solutions of (2).

Any differential equation or system is equivalent to a first order system or equation. This can be done by
introducing extra dependent variables for lower derivatives, known as reduction of order. It is used mostly in
proving theorems.

DEFINITION 1.3. A linear equation or system is a linear equation (in the algebraic sense) in derivatives of
dependent variables and the coefficients are functions of independent variables and parameters, not dependent
variables.

Example Legendre

d*y dy
2 _
is a second order linear scalar, dependent variable y, independent variable x, and parameter v. It is a linear

equation in 2% % . with coefficients 1 — 22, —2z,v(v + 1). The Harmonic Oscillator is linear in €2 4z 4 with
q dz?’ dx Y

coefficients 1,0, w?.

DEFINITION 1.4. An equation is called linear constant coefficient if it's coefficients are functions of the
parameters, not dependent or independent variables.

Independent variables and parameters will be real in this course, dependent variables are usually real.

Example Non Linear: Pendulum
2

0 .
ﬁ + Slne =0
For small 6, sinf ~ 6 so
d?6
— + 0=
202 + 0
We hope both solutions are similar to those for the harmonic oscillator with w = 1

2. Linear Equations

2.1. Homogeneous, Inhomogeneous, Existence and Uniqueness.



2. LINEAR EQUATIONS 5

2.1.1. Homogeneous, Inhomogeneous. Homogeneous means all terms are of degree d. Inhomogeneous
means all terms are of at most degree d.

d’z

Harmonic Oscillator %% + w2z = 0 is a Linear Homogeneous Equation.

. . 2 . . . .
Forced Harmonic Oscillator 4% + w2z = A cos(vt + ¢) is an inhomogeneous linear equation.
az = b is homogeneous while az = 0 is inhomogeneous.

THEOREM 2.1. The set of all solutions of a linear homogeneous differential equation is a vector space

PROOF. S = the set of functions z satisfying 2 +w?z = 0 Suppose z1, x5 € S = 2/ +w?r; = 0 25 +w?x =0
Let x = c1x1 + coxo Then o’ = 1) + coxfy and 2"/ = ez + coaf.
So 2" + w?r = ¢y (w155 +w?xy + a2 +w?) =0
= z € S, with basis = {cos(wt), sin(wt)} Suppose z1, z, satisfy 2" + w2z = f(z). Then x; — x5, = x satisfies
2" +w?z = 0, where z” is the corresponding homogeneous equation.

o + Wi = f(x), 2 +wlae = f(z)
x=x1—xg, ' =2 +ab, 2" =2 + 2}
= 2" + Wz = 2] + Wy — 2 — Wiy
=flz) = flx) =0
([

The general solution to the inhomogeneous problem is any particular solution plus a solution to the corre-
sponding homogeneous problem.
2.1.2. Existence, Uniqueness. Given an ordinary differential equation and conditions, we can ask

(1) Existence-Is there a solution?
(2) Uniqueness-Is there at most one?
(3) What is the solution? Explicitly? Numerically?
(4) How regular is the solution? Is it differentiable?
(5) What is the limiting behaviour?
(6) How do the solutions depend on parameters? Conditions?
(7) Are there invariants of the equation?
Example Invariants ‘% +w?r=0
dx

I=(%

)2 + w2x2

dI de . d%z dx dx d?z
— =2(=)(—=) + 2wie— =2
a = g ) e

2
(== =0
R TAY T
= I is locally constant for solutions.
THEOREM 2.2. Ifz : R — R satisfies z"" + w?x = 0 then I(t) = 2’ (t)? + w?x(t)? is constant.

THEOREM 2.3. Ifz : R — R is a twice differentiable (continuous) function satisfying z'(t)? + w?z(t)? =
constant
Then z"(t) + w?x(t) = 0 or x is a constant.
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2.2. First Order Scalar Equations. Of the form
dy

F((E,y,%

)=0
Take & = zy say.

Formally, f dy — fxdm, integrating from (o, yo)

In(y) — In(yo) = —2 - 2—0 = In(y) — % =1In(yo) — %2’ =constant.

22 2 z2

ye~T =caconstant. = y = ce> and ¢ = ype~ =
We need to prove:

:E2
(1) y(z) = ce%7 c=1ype 2 solves Z—Z = zy and y(zo) = yo
z

(2) If y solves ﬁ =y, y(zo) = yo then y(z) = ce’=, c =ype™ 2
PROOF. (a)
22 dy 22
= 7 = 2 = 2y =
y(z) = ce gy —ceTT=ay
=5 23 =3

y(zo) =ce™ =ype 2e2 =y
(b) % =2y, y(wo) =y Let Z(."E) = y(x)e*? Then

dz_dy_j z2 w2 dy _
Tr - dz© +y€6—?(_$) =e 2 (% —ay) =

dx =0 = zis constant. So z(x) = z(xz).

22

:E2
= y(x)e™ 7 =ype~ 20_0803/()—067

Checking that a given solution works is (almost) always purely mechanical. Will normally skip this step.
To prove uniqueness look for invariants.

Example 2 = 2%y?
Formally, [ %4 = [ 2?dx

:>1+—:— ¢ (const)
y 3 % 3
P
Y 3 c—x—;

Which has a singularity when 2 = /3c. Elsewhere, y(z) = is a solution of 4 = 22y which can easily be

checked (if bored).
Are there any other solutions’?

Take z(z) = ;5 = =’ Then & = =4 +x2 — —24° — (50 z is constant. = z(z) = z(z¢) = ¢ = S+ o =

c=>y=—g and o+ ’”0 =cSoy= o are the only solutions to 2 = z2y? Or are they?
c— c—

3

Exception.ys_ 0 |s a solutlon In the definition of = we divide by y WhICh could be 0. Division by 0 can lose
solutions. Why did Ex.1 work then?

y(x) = ces = 0if yo = 0, 50 we just got lucky.
2.2.1. Separable Equations. Suppose % = —%((;)) where M, N are continuous. Also, assume for now that

N has no zeroes.
In 9% = 2y, M(z) =, N(y) = L and similarly in §£ = 2?y*, M(z) = 2, N(y) = % In general:

% = % = [ N(y)dy = fM )dx integrating from (z0,%0)- By the Fundamental Theorem of Calculus (FTC),

Jo, Y with ' =M, ' =N

X(¥) — x(vo) = ¢(x) — d(z0) = Y(y) — p(z) = ¥(yo) — p(z0) = const.

1 is strictly monotone, so it is invertible and this equation can be solved for y I(z) = ¥ (y(x)) — ¢(x) should be
invariant. ¥ (y(x)) = ¢(x) + C, where C = I(xg) ¢ is invertible, so In s.t noy = on=id

= n(¥(y(2))) = nle(@) + ) = y(x)
Claim:
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(1) y(z) = n(p(z) + c) is a solution to % = %g))

(2) If & = M then y(z) = n(¢(z) + ¢) for some c.
dzx N

PROOF. (1) y'(2) =1/ (p(2) + )¢ (z) Also, (¢ omn’ =1 =1 =
S o M@
Y@= S v’ @ T Ny@)
@ -
V) = Ny
I(2) = (o) — (o) and e = o) — plow) Then 1) = ¥y ) —ote) = Nyl () ~
M(x) = 050 I(y(2)) = cie d(y(x)) — p(r) = ¢ = (y(x)) = o) + ¢ Then,

n(W(y(x))) = n(p(x) +c) = y(x)
0

Note: Equatlons of the form dy = P(z)Q(y) are equivalent to the separable equation j—g = Aﬁ,((;”)) with M =
P, N = Q away from zeroes of Q where we get constant solutions y(z) = yo

Example % = y% = 3 with M(z) = 1, N(y) =y~ % Then p(z) = z, 9(y) = 3y¥ = 2 =3yF 3 =y
= dg—i, "(i) = % s0 y(z) = n(e(z) +¢), y(z) = (“’+° and can check that this works. Are these all the solutions
to 32 =y5? .

No, y(z) = 0 is also a solution. So y(z) = {{ZE" 0} are these all the solutions? No

If ¢; < ¢y then

3
o v <=0
fl@)=4¢ 0 . —c<r< -
(z+c1) > —¢

27

Which is a solution to % = y% which is obvious except for x = —c3, = —¢;.
Derivative at —c;y :

. yl@) —y(=c1) 0 —c<z<—q
= lim —————F=9 (i)
z——c1 xr+c T - <z
v —ye)
r——cCq €T —|— Cl

50 y/(—c1) = y(—c1) = 0and y/(—¢1) = y(—c1)? ¢, is similar so dy = y3 everywhere. Note the non trivial part is
the existence of ¥’ at —cy, —ca
Unlike the other examples, the initial value problem

has multiple solutions.
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2.2.2. Exact Equations.

dy _ M(z,y)
dr  N(z,y)
with some conditions on M, N
Suppose I(z) = U(z,y(x)) = C Then
ou oUu dy . . . .
4 _— JR— _— =
I'(z) = e (x,y(z)) + a9 (x,y(x))dx 0 if U continuously differentiable
dy _ —5¢
dr %—Z

0 oU

If U is twice continuously differentiable then
LON_PU_PU oM
or  0xdy Oydx Oy

P ith OU _ oU _ oM ON __
Thereis no U with 522 = M, 5> = —N unless 5~ + 5> =0

LEMMA 2.4. (Poincaré) If in a disc %—]‘; + %—]X =0, M,N € C* then there isaU € C? in the same disc with

ou _ U __
centre &, where 5. = M, 5 = —N

PROOF.
1
Ulz,y) = /[(x =Mtz + (1= 0)& ty + (L—t)n) — (y — )Ntz + (L = )&, ty + (1 — t)n)]dt
0
Note: This is never the best way to find U. d

Example §% — 22U
M(z,y) =2 —y N(z,y) =z -2y GF =198 =184 1 G — ¢
Soff =M=20-y% =-N=-z+2%

Ul(z,y) = 2> — zy + f(y), f(y) a sort of constant of integration.
% =-—x-2y=ux+ f'(y) so f'(y) =2y = f(y) = y> + C a constant of integration. We can take C = 0 so
U(z,y) = 2? — zy + y* and Z—Z = i’”_;g < U(x,y(x)) is constant. U(z,y(x)) = U(xg,y(xo) = U(zg,yo) SO
2? —zy +y* = 2% — zoyo + y2 = c which is the equation of an ellipse.

Yy’ —zy+a?—c=0
From the quadratic formula,

_ vt \/(—2)2 —4(22 —¢)  x+Vdc—3a?

2 2

y(z)

which is defined only for 32? < 4c, i, |z| < /% < \/g(xg —zoyo + y2) So it is differentiable for |z| <

V423 — woyo + 3)
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To choose the sign, use the initial conditions,

x 4c — x?
Yo= =+ 3 !
Choose + if yo > %, choose — if yo < %
Sy — %((j;’)) is called exact if 2 + 9 — 0, 9% = F(,y) Itis exact if there are M, N such that M = NF and
oM | ON
oy + or 0

Question: How do we know if there are such M, N? Answer: We don'’t

Example
@:x—i_y :}M:_q;-{-yN:w—ya—M:la—N:127éo
der x— y dy ox
There is no U such that aU =x+y, 9 = —x +y. This choice of M, N doesn’t work. Does some other choice

y
work? Yes, but hard to f|nd What else can go wrong?

e May not be able to evaluate integrals in closed form
e U(z,y) = C may not be solvable for y as an explicit function of x.

For example, fe_””de and [y~ 'e¥dy have no elementary indefinite integrals.

Example
dy _ 1+ cos(z+y)
dr  1—cos(z+vy)
Take M(z,y) = 1+ cos(z +y) = 3U and N(z,y) = 1 —cos(z +y) = —%—Z while %—A; = —sin(z + y), %]X =

sin(z + y) so BM +48 =0 Integratmg, Ul(x,y) = x +sin(z +y) + f(y) where f(y) is a ‘constant’ of integration.

%—Z = cos(x + y) + f'(y) = —=N(z,y) = cos(z +y) — 1 So f(y) = —y + C where C is a constant of integration,

which we can ignore as we only need one invariant. Then U(z,y) = = — y + sin(z + y)
To find solutions: « — y + sin(x + y) = xo — yo + sin(zo + yo) = ¢ We can plot y — = = sin(z + y) — ¢ which gives
different solutions for different values of ¢

FIGURE 1. Rotated Sine waves for different C
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2.3. Homogeneous First Order Linear Equations. Consider ¢ = a(t)z and note this is a separable
equation so we can solve it.

9z — q(t)dt and we integrate from (zo, to)

t ¢
Then, log(z) — log(zo) = [ a(s)ds s0 = = exp( [ a(s)ds) s0
to

z(t) = xo exp(/a(s)ds)

Example z/(t) = tx as was solved previously.
Then

p 2 2 2
—t2 t t

2 2
x(t) = 2o exp(/ sds) = g exp(g - g) =X eXP(T()eXP(g) = Cexp(i)

to
2.4. Inhomogeneous Linear Equations. Of the form: 4 = a(t)z + b(t), z(to) = xo

Note: If 21, x5 are solutions to 2’ = ax + bi.e 2} = ax1 + b, 2, = axy + bthen x = z; — x5 satisfies 2/ = ax
To find all solutions to 2’ = ax + b we need one solution to ' = ax + b and all solutions to z’ = ax

For the homogeneous problem
t
y(t) = z(t) exp (—/a(s)ds)

to

t
is an invariant, and z(t) = cexp | [ a(s)ds
to
Question: Is y an invariant of 2’ = ax + b?

Answer: No if b # 0
y(t) = o' (t) exp (—/a(s)ds) — z(t) exp (—/a(s)ds) a(t)

to

= [2'(t) — a(t)x(t)] exp (—/a(s)ds) = b(t) exp (— /a(s)ds)

to to

Note: There are no z’s on RHS.

y(t) — ylto) = / y(s)ds = / b(s) exp ( / a<r>dr) ds

to to

y(t) =yo + /tb(s) exp (—/Sa(r)dr) ds

¢
Then, x(t) = y(t) exp (f a(s)ds) so, using above,

to

x(t) = yo exp (./ta(s)ds) + exp (/ta(r)dr) /texp (/ta(r)dr) b(s)ds

to to to

Substituting in above shows xq = ¢ so

() = g exp ( j a(s)ds) + j exp ( /t a(r)dr) b(s)ds

to to

What did we just prove?
If

(3) 2/(t) = a(t)e(t) + b(t), (to) = 20
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then

(4) x(t) = zpexp (/t a(s)ds) + /texp (/t a(r)dr) b(s)ds

to tO

Conversely, if (4), then (3).
PROOF.

2/ (t) = mp exp (/t a(s)ds) a(t) + exp (/t a(r)dr) b(t) + /texp (ja(r)dr) a(t)b(s)ds

= a(t)z(t) + b(t) and z(ty) = zo

Example 2’ =tz + 2t — 3. Then a(t) =t, b(t) =2t — 3

z(t) = xoexp (/t sds> + /texp (/ rdr) (25 — 5%)ds

to to s

With initial conditions (¢, o) ,0) then

‘ 2 2
t
( rdr) 25 — %)ds = /exp (2 - 82> (25 — 5%)ds
0

Changing the variable to o, o = % do = sds then

where , ,
/exp(—a)(l —o)do = — /(1 - o)d— exp(—o)do
0 0
=— / %[(1 — o) exp(—o)]do + /exp(—a)%(l —o)do
0 0
Also,
/exp(—a)%(l —o)do = /(— exp(—o))do = /%(exp(—a))da
0 0 0
SO

so z(t) = t? satisfies 2’ =tz + 2t — t3.
3. Linear Systems

Systems of the form:
x(t) = A(t)x(t) + b(t) z(to) = o
where t,tq is a scalar, o a vector, z, b are vector valued functions and A is a (square) matrix valued function.
Note: No loss of generality in restricting to first order.

We hope that...
z(t) = exp (/A(s)ds) Zo + /exp (/A(r)drb(s)) ds

to to s

Questions:

(1) Can we define a matrix exponential sensibly?
(2) Is this a solution to 2’ = Az + b?
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Answers:

(1) Yes, mostly.
(2) No in general, sometimes yes.

3.1. Matrices.

DEFINITION 3.1. For

A =
we define the matrix norm || A|| to be
Al =
||A]| has the following properties
e ||4]| = \/trace(AE) = \/trace(ﬁfl)
o |[A+ Bl <[lA]l +|B]l
o |[pAll = |pll|All

[|AB|| < ||A]|||B|| note inequality here.

CONTENTS

a1,1

am,1

>y

i=1 j=1

a1,n

Qm,n

|a; j|?

Sequences and Limits of Sequences of matrices can also be defined.

DEFINITION 3.2. We say lim A, = L ifVe > 0,3N such that
n—oo
n>N=||4, - L||<e

Properties:

e lim (uA+vB)=yp lim A, +v
n—oo n—oo
e lim A,B, =(

n— oo

lim B,

A X n—oo
53, An)( 52, Br)

A series converges if the sequence of partial sums does.
Exponential Series: exp(A) = Y~ L A" converges for all A.
n=0

Examples:

exp

Another example:

n=0 n=0
0 . A1
i _ 1 :
IS e
Am n=0 0

0
92k

0" 0

> (50

y

- if n = 0(modd)
A > it =1 (modd)
0 ) itn=2 (mody)
o ) it n = 3 (modd)

>

=0

oo

(-1
2k + 1)!

0
( _92k+1

92k+1

0

)




3. LINEAR SYSTEMS 13

o0k 00 Nk
SGe o I o

0 o (—1)* 92k 92k+1 0
> o Z der
_ cosf sind
~\ —sinf cosf

(3 4))-(5 )+ (2 8003 1)

as all higher powers of the matrix are zero. It then follows that

(3 (% 3)-(2 ) (5 1)-( 1)

but a similar computation yields

(5 0))er((55))= (5 M)
exp((§ )+ (0% 0))- (fi,’ffe s )

In general, exp(A) exp(B) and exp(B) exp(A) are distinct. (A + B > ’,“L,;,AJB’€ if AB= BA, soexp(A+
j+k n

Example

and also

B) = exp(A) exp(B) = exp(B) exp(A) if BA= AB
Example: exp((s + t)A) = exp(sA + tA) = exp(sA) exp(tA) = exp(tA) exp(sA) if s = —t.
I = exp(—tA)exp(tA) = exp(tA) exp(—tA) and

exp((s +t)A) —exp(tA)  exp(sA)exp(tA) —exp(tA) _ (exp(sA) — I) (exp(tA))

(s+t)—t s s
o 377’_1 oo Sn_l
= <Z p A") exp(tA), andz p A=A
SO " h
%exp(tA) = lim exp((s + t)é) —XPUA) Y p(t4) = exp(tA)A
For example, 4 it lexp(tA)zo) = [2 exp(tA)|zg + 0 = Aexp(tA):co i.e, z(t) = exp(tA)zo is a solution of 2/ = Ax.

Conversely, if 2’ = Ax then set y = exp(—tA)x so y = —exp(—tA)Ax + exp(—tA)z’

Yy =exp(—tA)(z'— Azx) = 0 = yis constant. xo = exp( tA)x(t) = exp(tA)zo = exp(tA) exp(—tA)z(t) = z(t)
So z(t) = exp(tA)x is the unique solution to ' = Az, x(0) = x¢ and z(t) = exp((t — to)A)xo is the solution of
' (t) = Azx(t), x(to) = zo

Example 2" + z =0, 2’ = v, v = —z which can be represented as vectors and matrices. For example
x' (0 1 x
LU =1 0 v
x(t) \ _ z(to) \ _ cos(t —tg)  sin(t —to) z(to)
< v(t) > X ((t to) ( -1 >) < v(to) ) ( —sin(t —tp) cos(t —tp) v(to)

= z(t 0) cos(t — to) + 2’ (to) sin(t — to)

This works only because A is constant!

For 2/ (t) = A(t)x(t), x(to) = xo in general, exp((¢t — to)A(t)) is not a solution, nor is exp <ftA(s)ds>

to

Example

0 (1)2k+1< _61> ifn =2k + 1
Do o~ (DF o0 F#
exp(tA)—kZ:O(%), <0 1>+k2:0(2k+1)'(t : )
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zcos(l)( - )+sin(1)( ! %1 )

v ( tcsoii((ll)) ;o;((ll)) ) ( b )

is not a solution of 2/(t) = A(t)z(t) for some ( Z )

v(t) = ( sino(l) Shzogl) ) ( b )
o= (3 3) (i) (5)= (o =) (3)

So for 2/ = Az we have the general solution z(t) = exp ((t — t9)A) 2(to) where exp (t4) = 3 L A", We aim to
n=0

—

Note that

solve this more explicitly.

Special Case:Suppose A is diagonalizable, i.e, Avy = v\, ..., AVm = VmAm Where A is an m x m matrix, A
is a scalar, a 1 x 1 matrix, and v a m x 1 matrix. Also, vy, ...v,, are eigenvalues and Ay, ... \,,, are eigenvalues.
Then AV = V A, where

: : A0 0
V= Vi ... Unm s A= 0 . 0
: : 0 0 A
Then {v4,...,v,} are a basis, so V is invertible.
AV =VA = A=V ! = exp(tAd) = Vexp(tA")V !

0 1

Example Take A = ( 10

) which has eigenvalues \; = 1 for vy = ( 1 ) and Ay, = —1 for vy = ( —11 ) o)

)G A6 )

0
-1

1
0
U -1 )P\l = ))a21 1
B €t+7f ¢ _267t _{ cosht sinht
T\ ez e4e” | T\ sinht cosht

, (0 1 S a(t) = cosht sinht
=110 )" =\ sinht cosht ) ™0

What if A is not diagonalizable?

) A=VMalandv =1 < i ) S0 exp(tA) = Vexp(tA)V 1

-1

So,

THEOREM 3.3 (Jordan Decomposition). If A is a complex square matrix then A =V JV~! where J = D+ N
for matrices D, N and:

e D s diagonal
e N is nilpotent (some power of it is zero)
e DN=ND

So D and N are of the form:

A 00 0o 0 1 ...
D= 0o . 0 , N = 0o . - for say the first 3 eigenvalues equal
0 0 Ay

Then exp(tA) = Vexp(tJ)V ™! = Vexp(tD + tN)V ! = Vexp(tD)exp(tN)V 1.
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Example Consider y’ — 3y’ + 2y = 0. We can use reduction of order as before, giving

d Y 0 1 0 Y
@ y/ = 0 0 1 y/
yl/ 72 3 0 y//

where the eigenvalues are the roots of the characteristic polynomial, det(A\] — A) = X3 -3\ +2 =0 = (A +
2)(A — 1)2, so the eigenvalues are A = —2, 1, 1 and the eigenvectors can then be found

1 1 1 1 —1 —1 1
Al =2 | = 2 | (2,4 1 ]=1]|@®, Al 0o |=( 0 JW+| 1
4 4 1 1 1 1 1
so then, we have
1 1 -1 1 1 -1 -2 0 0
Al -2 1 0 = -2 1 0 0 1 1
4 1 1 4 1 1 0 0 1
1 1 -1 -2 0 0
whereV=| -2 1 0 and J = 0 1 1 | andJ canbe decomposed into D and N, where
4 1 1 0 0 1

exp(tA) =V 0 e tet

( y(t) ) ( y(0) ) (6% 0 0 ) ( y(0) )
y'(t) | =exp(td) | ¢'(0) | =V 0 e tet | VL 4(0)
y'(t) y"(0) 0 0 ¢ y"(0)
y(0)

and V-1 | #/(0) | isconstant so we can solve explicitly to get

y"(0)
y(t) = cre 2 + cae! + cste! and the coefficients can be determined from the initial condition and differentiating
this general solution.

e y(0)ey + ¢
e y/(0) = —2¢1 +cac+cs
e 3(0) = 4c; + 2+ 2™V (0)cy
and then solve for the coefficients.
3.2. Linear Constant Coefficient Homogeneous Equations, Scalar. Consider the equation
et ™ + e 12 4 oz =0

We can carry out reduction of order as before to give us the following system:

0 1 0 ... 0
x . 0 1 0 X
1 N 1
d T : . - dx
el (m—1) — . e 2t
dt : v (0) 0o ... . : 7 Az
2(m—=1) 1 2(m=1)
We now need the characteristic polynomial of this system, f(\):
A -1 0 ... 0
A =1 0

P(X\) =det(M — A) = det )
A -1
o A+ St

Cm Cm
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Cm Cm Cm
and A =VJV~!where J =D + N as before. So the roots are \,...,\,, and
0o 1 0 ... O
A1 0 0 1 0
D= . N =
0 . 3 0
O )\’"L

with the 1’s above the diagonal (Jordan Blocks) and 0 along the diagonal. This is because we require DN = ND
and

0 1 0 ... 0 0 0 1 ... 0
A= 0 o , A= 0 . 0 1
| stuf f
—c0 —Cm-—1 stuff
0 0 0 ... 1
stuf f
ATl = : LAY =1
and also I, A?,..., A™~! are necessarily linearly independent. P(A) = 0 and P is non zero so the degree of

P > m. So the minimal polynomial is equal to the characteristic polynomial. This means N has 1’s wherever it
can (along the super-diagonal). Then we have

1 ¢t o0 0
0 1 ¢ 0 0
S o 1 0 o
t
exp(tD) = 0o . , exp(tN) = 0 1 0 ...
0 0 .
0 0o 1 t &
0 0 0 1
for each of the corresponding k x k blocks. Therefore,
e/\t te)\t 0
0 .
exp(tJ) = : M
for each of the k£ x k blocks. So
6)\t te}\t
xl(( )) xl((o )) 0 xl((o ))
x(t z (0 z (0
x(t) = = exp(tA) : =V M vt
x(m_l)(t) .’E(m_l)(O) x(m_l)(())

So the solution is some linear combination of t/e** where ) is a root of the characteristic polynomial and j is an
integer, where j is less than or equal to the multiplicity of P. The set of all solutions is a vector space with basis
{t7eM}.
To solve this as an initial value problem, with, say,

e 2(0)=...

o 2/(0)=...

2= (0) = ..
we use the Method of Undetermined Coefficients:
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o z(t) = a;eM + aste* ...+ a,, ... in terms of each of the basis vectors.

o
o (M1 (1) = a; N 1M + ... and solve the system of linear equations.
Example Forced Damped Harmonic Oscillator.

(5) az” + bx' + cx = cos(Q)

which is an inhomogeneous equation. To solve this we use a trick. Differentiating twice we get
(6) az"" 4 b 4 ca’ = —Q* cos(t)

and then (6) + Q2(5) gives

(7) = az"" +bx" + (c + aQ?)a” + bQ%z" + Q% =0

which is an homogeneous system. It should be noted that (5) imples (7) but the converse is not true. The
characteristic polynomial of this 4 x 4 system is

P(\) = ad* + 0\ + (¢ + QA% + 002N 4 ¢Q? = (a\? + bA + ¢) (A% + Q?)

which has roots A = +iQ2 and A = %@‘/Z where A = b — 4ac. We then have 3 cases to consider:

(1) A > 0, the Overdamped Harmonic Oscillator

(2) A =0, the Critically Damped Harmonic Oscillator

(3) A <0, the Underdamped Harmonic Oscillator
The last of these cases is the most interesting so we will focus on this one.
Set w = % and r = % so that the roots of the polynomial are +i2, » + w and a basis of the solutions is
{ei¥ =i orttivt o—rt—iwtl  Thig would not be a basis if 2 = 0 or w = 0 but we exclude these cases as
then system would then be critically damped and homogeneous, respectively. The only other time when this
will not be a basis is if r = 0 and w = Q, which is known as resonance. The basis we have is equivalent to
{cos(2t), sin(2t), e cos(wt), e~ " sin(wt) } s0 we get

z(t) = acos(Qt) + Bsin(Qt) + ye " cos(wt) + e sin(wt)
for constants «, 3, v, ¢ differentiating this we get
7' (t) = BQcos(Qt) — aQsin(Qt) + (dw — ry)e " cos(wt) — (yw + 78)e” " sin(wt)

and similarly for 2" (¢) and z'(¢), as required. Evaluating these at 0 we then have a system of linear equations

e z(0)=a+vy

o 2/(0) = BQ + dw — yr
o z(0)=...

° x///(o):

which can be solved for «, 3,7, ¢ in terms of 2(0), 2’ (0), 2" (0), "’ (0). So we have:
ax” + bx’ + cx = cos(t)
ax”"" +bz" + cx’ = Qcos(0t)

which give
iy — “2roy _ © 1
(0) = ~2a/(0) - Za(0) +
1" ;b ey S
0) = ~2a'(0) - Ea/(0)
which give
) (r? + w? — Q%) (cos(Qt) — e~ "t cos(wt) — Le~ " sin(wt)) + 2rQ(sin(wt) — %e‘” sin(wt))
x =

4+ 2r2w? + 2r2Q2 + wt — 2w202 4 Q4
1
+z(0) (e_” cos(wt) + Lert sin(wt)) + 2'(0) =" sin(wt)
w w

If » =0 and w = Q the denominator vanishes and so {cos(Qt), sin(2t), e~ cos(wt), e~ "* sin(wt)} is no longer a
basis for solutions to (7). To find a basis in this case we have the characteristic polynomial (A% + Q2?)(A\2 — 2rA +
r? + w?) = (A + w?) with resonance. Then, the basis should be

{e¥ 1™ 1 2 (m=D(0)te= M} = {cos(Qt), sin(Qt), t cos(Q), tsin(Qt)}

Then, similarly to above we can find a general solution and solve for the constant coefficients in terms of
x(0), 2’(0), 2”(0), "(0) and write z’'(0), ="’(0) in terms of 2/ (0), x(0).

This method is known as the method of undetermined coefficients, which works for:
¢ Linear constant coefficient homogeneous scalar equations.
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e Some linear constant coefficient inhomogeneous scalar equations. It works for those whose RHS
satisfy a linear constant coefficient homogeneous equation.

This means, for polynomials p and ¢ we have

d d
p(dt)x—fwhereq<dt>f_
then

(2 ()

which is the characteristic polynomial. In the previous example, p(A\) = A2 — 2rA + 72 + w? and ¢(A\) = A2 + Q2
and

(cl(ZQ + Q2> cos(Qt) =0

A basis for (8) is of the form t/e* where ) is a root of pg and j <multiplicity of pq

3.2.1. Solutions using Fundamental Matrices. What about a more general function f?
i.e, not ones satisfying ¢ () f = 0 for any ¢
By reduction of order, we can write it as a first order system a’(t) = Axz(t) + b(t)
More generally, we can consider
z'(t) = A(t)z(t) + b(t)
possibly after reduction of order. We then need the following definition.

DEFINITION 3.4. W (s,t) is said to be a fundamental matrix if
o ZW(s,t)=A(t)W(t)
o W(t,t)=1

Example If A is constant, W (s,t) = exp((s —t)A).
For general A, there is a unique fundamental matrix. Take W (s, t)W (s,t)~! = I. Then, differentiating gives:

QW(S, W (s, 1)1 + W(s,t)2 (W(s,t)™") =0

ot ot
and on multiplying by W (s, ¢)~! we get
9 0
W (s, t) (,%W(s,t)W(s,t) + 5 (W(s,t)™") =0
- % W) =-w= (QW) Wl = =W (s, t) LAGW (s, )W (s,8) = =W (s,£) A1)

we then have the following claim.
Claim: W (s, t)W(r,s) = W(r,t)

PROOF. W (r,t)"'W (s,t)W(r,s) = I if s = t. Then, differentiating,

% (W(r,t)""W (s, t)W(r,s)) = (gtW(r, t)_l) W(s,t)W(r,s) + W(r,t)™* (gtW(s,t)) W (r,s)
= —W(r,t) A®)W (s, t)W (r,s) + W(r,t) " At)W (s, )W (r,s) =0
so we have W (r,t) "W (s,t)W (r,s) = I for all t so W (s,t)W (r,s) = W(r,t). O

Suppose z’'(t) = A(t)x(t) + b(t). Then, define
y(t) = Wto, )~ a(t)
so we have
Y (t) = =W (tg, t) LA x(t) + W (to, t) " 2! (t)
(to, 1) " (' (t) — A(t)a(t)) = W (to, )~ 'b(2)

I
=

then we can get

y(t) = ylto) + / W to, s) " b(s)ds

and z(t) = W (to, t)y(t)

= W(to, t)y(to) + W(to,t)/W(tms)_lb(s)ds = W(to, t)z(to) +/W(s,t)b(s)ds



3. LINEAR SYSTEMS 19

Conversely, if we have
i

x(t) = Wi(to, t)xo + /W(s,t)b(s)ds

then 2/(t) = A(t)x(t) + b(t) and z(tg) = xo SO

&' (t) = AW (to, t)zo + W (t, £)b(t) + /A(t)W(& £)b(s)ds

= A(t) (W(to,t)mo + / W(s,t)b(s)ds> + Ib(t) = A(t)z(t) + b(t)

How do we find W2 LV (¢) = A(t)
If V' is invertible then W (s,t) = V (t)

(t) if and only if the columns of V satisfy 4 u(t) = A(t)v(?).

v
V(s)~! works and 2T (s, t) = A(t)V(1)V(s)~! = A()W (s,t) and W (t, 1) =

V()V()~' = I. Then 2/(t) = A()x(t) + b(t), x(t) = zo gives z(t) = W(to,t)zo + f‘W(s,t)b(s)ds and

W (s,t) = V(t)V(s)~! so the columns of V are linearly independent solutions of v/(t) = A(t)v(t).
Example Consider (1—%)z" (t) —2ta'(t) = f(t). Lety(t) = 2'(t) so y'(t) = 127y (t)+ L% which can be written

in matrix form, giving , o
()= &) () ()
(5 -won( 50)« fwen( g

200 =) ()

giving /() = y(¢) and y/(t) = 255 y(t) so then solving for z(t), y(t)

which has solution

) as

to find W, solve

y(t) = y(0) exp (/ 1 2852) ds = y(0) exp (— log(1 — t2)) - 1y£0t)2

(1) = 2(0) + /tx’(s)ds — 2(0)+ /ty(s)ds — 2(0) +j 1”50;2 ds
0 0
:x(O)—i—y(o)O/t; <118 +1i5> ds:x(0)+@1og Gj)

and we know y(t) = ¥ from before which gives solutions

(30)=(3)-( 45))

SO
1 14t
V() = 1 210gt17t)
0 T—t2
Vis)! = 1 —%(1+82)log }fj)
0 1+ s2

and W (s,t) = V(t)V(s)~! which gives

1 %(1 + s%) log (%) — %(1 +t%)log (%fj)
O 1+s2

W(s,t) = (

so for the original equation (1 — t2)x"(t) — 2tz'(t) = f(t) the solution is

e S REE)

— S
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+1O/t ((1 — %) log <1—_H;) — (1=t} log (ij)) 1f_(322 ds

We have &% = A(t)W (t) which can also be written as

[\

and the rows of W satisfy

j=1
- -
Ws,t)y=1 _ @ _
-, -
and the determinant is linear in each row.
- - - -
det(W(s,t)) =det | _ : _ |+...+det P
-, - T
and also
- r - - T1 - - r -
o - : - " _ _
det| — vo— =] 7 2w - =3 eodet | = 1y
— - S — -

with the r; in the ith row. We then have to consider two cases. If i = j the the value is a; ; det(W (s,t)), 0
otherwise. So

det(W (s, t)) = Zam(t) det(W (s,t)) = tr(A(t)) det(W (s, t))

so det(W (s, t)) satisfies a first order scalar equation.

det(W(s,t)) = det(W (s, s)) exp (/ tr(A(r))) dr = exp (/ tr(A(r))dr)

S

S

Example Consider A = ( 8 21t

1—t2

) then we get

t

2r 1—s? 1-—s?
det(W (s, t)) = exp (/ T2 dr) = exp (log (1_752>> =15

S

then
t

2r 1—s? 1—s?
det(W (s, t)) = exp (/ 1_r2dr) = exp (log (1_752>> =1 g

S

1 st
0 slq_{zf — 1=¢7 as it should be.

1—t2

and also det(W (s, t)) = ‘
Then £ det(W (s, t)) = tr(A(t)) det(W (s,t)) which implies det(W (s,t)) = exp <ft tr(A(r))dr) ie OV = AW. If

V satisfies V! = AV then det(V) = tr(A) det(V) and det(V (t)) = det(V(S)) exp (i tr(A(r))dr)
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3.3. Higher Order Scalar Equations. We can then consider higher order scalar equations of the form
ez (1) + ..+ e (D)2 (1) + co(t)z(t) =0

which can be re-arranged using reduction of order to give

0 1 0 ... 0
x(t) o 0 1 ... 0 z(t)
£ '(t) — : : z'(t)
dt . - ) .
:37("_1)(t> 0 . 233(”_1)(1?)
ity “—Cn—1

calling the matrix A(t).

So then we have v'(t) = A(t)v(t) and tr(A(t)) = ’CC;(;)(“ so

det(W (s,t)) = exp (/ CZ;(lg) dr)

S

so it only depends on the first two coefficients.
3.3.1. Second Order Scalar. Focus on equations of the form

ca(t)a”(t) + er(t)a’ () + co(t)a(t)
then we get

s0 det(V () = 1 (t)z) () — z2(t)x, (t) and

t t
det(V (1)) = 21 () (t) — z2(t),(t) = det(V (s)) exp ( / tr(A(r))dr) = det(V(s)) exp (_ / c1(r) dr)
which is a first order linear inhomogeneous scalar equation for z- if x; is given.
Example Take (1 —t?)z” — 2ta’ = 0. Then z4(¢) = 1 is a solution and

1—s2
1—¢2

1—r2

1 ()25 (1) — 2 (H)w2(t) = cexp (

v —
)
S

dr) = cexp (—log(1 —1?)) |Zi =c

Then we can choose s = 0 and ¢ = 1 50 z4(t) = 12 which means

xo(t) = mo(s) + / #dr

1—1r2

»

we chose s = 0 so z2(s) = 0 giving

Example

(1 — )" (t) — 2ta’(t) + 6z(t) = 0
A particular solution is x1(t) = 3t? — 1 so z(t) = 6t, z/(t) = 6 which gives (1 — t?)6 — 2t(6t) + 6(3t> — 1) = 0
and we can get

1

m(B)ay(t) — w1 ()z2(t) = ex—5
so det(V (¢)) only depends on the first two coefficients. We can choose ¢ = 1 (any non zero choice will work)
and s = 0 so z3(s) = 0 (almost any choice of s will work (zeroes of the particular solution)). Then we get

6t 1 1
L) = ——ap(t) + —— -
1) = g 1O+ T pgE

t t
67 1 1
xz(t):/eXP (/ 3r2—1dr) 232 1%

0 s

SO
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t , .
olle) )1
S

/ il ds = (3t 1/

s = (32 —
352—121—52 1—s2)( 1—352)
0 0

=y(1—3s7)z using partial fractions:

1 1 1 3 1+ 3s? 1d 1+s 3d S
== +° =-—log|— )+ —(—
(1-82)(1-3s2)2 41—s2 4(1-3s2)2 8ds 1-—s 4ds \ 1 —3s?
t
so [ (1—32)((118—352)2 = %log (%) +1 (1—t3t2) giving
0

3t2 —1 14t 3
xo(t) = 3 log <1 —t> - Zt

This method is known as Wronskian Reduction of Order

t
We can solve [ ¢
0

3.4. Method of Successive Approximations-Picard Iterations. Suppose we have 2/(t) = ax(¢) and
x(tp) = &. Then by the fundamental theorem of Calculus we have
t t
x(t) = x(tg) + /a:’(s)ds =&+ /Aa:(s)ds
to t
Picard iterations are similar to Newton’s method for approximating roots and take the following form
e Take an initial guess x_1(¢)
t
e Refine this initial guess using z,,(t) = £ + [ Az,—1(s)ds
to
Questions:

(1) How to choose z_1?
(2) Does the sequence z,,(t) converge?
(3) Does z(t) = lim xy(t) satisfy o' (t) = Ax(t), x(to) = £?

Answers:

(1) It doesn’t matter, so may as well take x_1(t) =0
(2) Yes
(3) Yes
So we have z_1(t) = 0 and using the iteration gives z_;(¢t) = 0 so

§+/Ax1

1 (1) §+/Ax0 ds_§+/A§ds_§+(t—to)A§ (I+ (t—to)AE)

t

a(t) = £ + /Aml(s)ds —eq /A(f (s — to) A€)ds

to

t
=&+ (t—tg) A+ /(s —to)A%¢ds = € + (t — tg) AE + A%¢ /(s — tg)ds

to

=&+ (t—tg) AL+ uA?g (I +(t —to)A+ t 2t°)2A2> ¢

In general, we have
N

o (t - to)n n
and also, A}im xn(t) = exp((t — t9)A)¢E satisfies the Initial Value Problem.

Does this work for non-constant A?
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t
Assume A is continuous. Then, define z_;(¢) = 0 and z,,(t) = £+ [ A(s)z,,—1(s)ds, which is defined recursively.
to

Also, define
Az (t) = 2 () — 2p—1(t)
so that

¢
Az, (t) = /A(S)Axn_l(s)ds forn >0
to

so then Az (t) = £ and

Az (t) = /A(S)Axg(s)ds: /A(s)ﬁds
Az(t) = /tA(s)Aacl(s)ds = /tA(s)/TA(r)fdrds

so in general,
tn t1

Az (t) :/tA(tn)/A(tn1).../A(t1)§dt1...dtn

0

= / .../A(tn)...A(tl)gdtl...dtn
to<t1<...<t, <t
3.4.1. Estimates (Inequalities). Set

= 1max 4 t o < tO < 8

1Az, ()] | < Mellfora <t < 8

|t — tol
n!
PROOF. By induction on ¢t > to. For n = 0 let Az, (¢t) = &, and for n > 0,

Az ()] =

| /tA(s)Axnl(s)ds

< / 1A(5) A1 (5)] |ds

t t
_ n—1
< [ A A, aollas < [ ar e ar gl as

M
= —(t—t0)" |I¢]]

n
7n!

O
Also, z,(t) = > Ax;(t) so then Y. =l pn | ¢| | exists, and is equal to exp (|t — to|M) ||€]|. Then by the
=0 n=0

comparison test, Y Aux,(t) exists and ||z (¢)|| < exp (|t — to|M) ||¢|| and

n=0
xn(t) =€+ /A(s)xn,l(s)ds
also,
x(t) =&+ /A(s)x(s)ds

(1) = A(t)x(t)
We can use this to solve for the fundamental matrix 2 W (to,t) = A(t)W (to,t), W(t,t) = 1. Set W_1(t) =0

t
then W,,(¢t) = I + [ A(s)W,_1(to, s)ds which converges to a solution to the initial value problem.
to
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4. Existence and Uniqueness
THEOREM 4.1 (Local Existence and Uniqueness for linear inhomogeneous ODE’s). If A : [a, ] — R™*™
andb : [a, 8] — R™ are continuous andt, € [a, 8], £ € R™ then there is a unique solution x : [a, 8] — R™ to the
Initial Value Problem xz(ty) = &, 2/(t) = A(t)x(t) + b(t).
t
PROOF. Construct W by Picard. z(t) = W (to, )€ x [ W (s, t)b(s)ds works.
to

O
THEOREM 4.2 (Global Existence and Unigueness)
place of [a, §].

Same statement as local theorem, except with R in

PROOF. R = Ugrsolto — L, to + L] and apply the local theorem to [tg — L, ¢y + L] O
What about non-linear examples?

a'(t) = F (t,2(t), z(to) =¢
If F:S — R™is continuous, for

S={(t,z) eERxR™: |t —tg| <6, ||z —¢&|| <r}fordr>0
(We will need more conditions later). Then

xn(t) =&+ /F(s,xn,l(s)) ds, n>0
to

[t —to] < 6 and z(tg) = £ so then

t t

n(t) =€+ / Fs,€)ds, a5(t) = € + / F(s,2(s))ds

tU t[J

Also, Az, (t) = zp(t) — xn-1(t) forn > 0and x,(t) =& + f: Ax;(t),
j=1

t

A (1) = / (F(s,2n1(5)) — F(s,2n—2(5)))

to
Problem: If F is non-linear in z, how is F(s,z,_1(

8)) — F(s,xn—2(s)) related to @, —1(s) — z,—2(s)?
Consider y, z : [to—d,to+0] — R™ such that ||y(t)—¢|| < r, ||z(¢)—¢&]|| < r. We then estimate F'(¢, y(t))—F(t, z(t))
The trick is to introduce U (t,7) = Ty(t) + (1 — 7)z(t) so that U (¢, 1) = y(t), U(t,0) = z(¢) then

F(t,U(t,1)) — F (t,U(t,0)) /gFtUtT)d
0

oF OFOU _OF

87’ 8I 87' az (t’ U(t’ T)) (y(t) - Z(t))
so the matrix equation is
OF; -~ OF;
=i 6 U(ET) = kE:j o (BU ) Ok = 2()

Set

M = max
then
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SO
t t
1Az, (8)]| < /M|\xn_1<s> ~ a(s)] |ds :M/
to to

We then aim to show by induction that

NMnfl
n!

1Az, ()] < [t~ tol", m >0, N = max||F]|

t
zo(t) = £ and z1(t) = £+ [ F(s, &)d¢ where the integral is equal to Az (t). ||Azy(¢)]] < |t — to|N so
to

t t
M~2N L M™IN ;
|\Amn(t)||S/MHAmn_l(s)Hdsg/Mi(n_l)!|s—to| ds = it
to to

MI-IN S MIN
| [t —to)’ < Z

; |t tol”

o (t) = €1 <D 1Az (0)][ <)
j=1 j=1 j=1
so we have

N . 1 Mr
lon(t) = €11 < 3 Cexplle ~ ld0) ~ 1) < rif e —t0] < 108 (14 5

then define ¢ = min (8, 2+ log (1 + %)) so for [t —to| < &
M IN
n!

both of which are proved by induction.
So z,,(t) converges to some z(t), i.e,

|Aza(B)]] <

N
[t —to[" and ||z, (t) — || < 57 (exp(|t —to[M) — 1)

xn(t) =&+ /F(s,xn_l(s))ds, z(t) =& +/F(s,x(s))d5

and z(to) = ¢, 2/(t) = F(t,z(t)). Picards method gives us a solution to the initial value problem in [to, 4, to + 0]
which gives existence. For uniqueness,

[F'(t,y(t) = F(t, ()| < M|ly(t) — 2] 1f [[y(t) = &[] < [[2(t) =&l <7
Now suppose y'(t) = F(t,y(t)) and 2'(t) = F(t, 2(t)) so [|y(to) — &[] < r, [|z(to) — &l < rand [[y(t) — || <
r, ||z(t) — &| | < r fort near ty, SO
[F'(s,y(s)) — F(s,2(s))| | < M [[y(s) — z(s)]|
for s between t and .

y(t) = ylto) + / Fs,y(s))ds, =(t) = 2(to) + / F(s, (s))ds

t

y(t) — 2(t) = y(to) — 2(to) + / [F'(s,y(s)) — F(s, 2(s))] ds
and O

1) = 2| = [[(t0) — 2(to)] | +M/ ly(s) = 2(s)| |ds

This estimate is valid on some interval I = [ty — 0,1t + 4] for 6 > 0. Let

S ly(®) = )]
5 TlyCto) — =(to)] [TTexp(Jz — o[ M)

then
ly(t) — 2(O)]| = Cly(to) — z(to)| ||| exp(|t — to|M)] | for some t € I

ly(s) = 2(s)[| < Clly(to) — 2(to)| [exp(ls —to|M) Vs €

ly(t) = 2O < [ly(to) = 2(to)| | + CM/ Ily(to) — 2(to)| | exp(]s — to|M)ds

to
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= |[y(to) — z(to)|| (1 +CM /eXp(|5 - toM)d$>

= ly(to) — z(to)| | [1 + Clexp(|t — to| M) — 1]} = C'||y(to) — z(to)| [ exp([t — to| M) — (C = 1) [[y(to) — 2(to)||
s0 (C —1)||y(to) — z(to)| | < 0so C < 1. This means, Vt,
ly(t) = 2| < [ly(to) — 2(to)| | exp(|t — to| M)
COROLLARY 4.3. Uniqueness of Solutions: Take y(to) = z(to) =&. Then ||y(t) — z(t)|| < 0= y(t) = =(t).
COROLLARY 4.4. Continuous dependence on initial conditions x(t) depends continuously on €.
So we can formulate these results more concisely.

THEOREM 4.5 (Picard Existence and Uniqueness theorem for ODE’s). If F, %—5 continuous on S then there
is a unique solution to

' (t) = F(t,2(t), z(to) = ¢
for |t — to| < & depending continuously on &.
4.1. More Existence and Uniqueness Theorems.

THEOREM 4.6 (Theorem 0). If F' continuous and gTFi is continuous near (tp,xo) € R x R™ then the IVP
a'(t) = F(t,z(t)), «(to) = xo has a unique solution near t, and depends continuously on x, (and t).

4.1.1. Improvements.

THEOREM 4.7 (Theorem 1). [fG : U C R x R™ x R™ — R™ is continuous in some neighbourhood U
of (to, zo,v0) and 262 2% also continuous and 22 is invertible the the IVP G(t,xz(t),2'(t)) = 0, z(ty) =

Oz’ Ovg vy,

x0, 2'(tg) = vo has a unique solution near t, if G(tg, zo,vo) = 0.

PRooOF. Theorem 0 and the Implicit Function Theorem. O

Example 2/(t)° — 2(t)? = 0in R. Then G(t,z,v) = v* — 22 and G, 3¢ = —22 and 2¢ = 302 are all continuous
and %—f invertible if and only if v # 0. z'(¢y) = v has a unique solution near ¢, provided

vy — 22 =00y #0

2
vo =x§ o # 0
So #/(t)3 = x(t)? gives 2/ (t) = z(t)3, x(ty) = z0, F(t,x) = 3 so it has a unique solution near ¢, if zo # 0. This

is the example we did in week 2 with j—x — y3 which was separable.
THEOREM 4.8 (Theorem 2). If F' is continuous near (ty, zo,w) in R x R™ x R™ along with gTFi then there is

a unique solution to z'(t) = F(t, z(t)w), x(ty) = xo which depends continuously on ty, zo,w.

Example =" + kz =0, 2/ = v so v' = —kx with 2(0) = 0, v(0) = 1. An explicit solution is
sin(Vkt)
w(t) =1 k k=0
sin(v/—kt)
v k<O

and continuity at £ = 0 can be shown by LHopital.

PROOF OF THEOREM 2. Promote parameters to dependent variables, giving:

Im_;,_l(to) = Wiy s Tm4n (tO) = Wy
x;n-‘rl(t) = 05 cey x;n-l-n(t) =0
and then apply Theorem 0 to the extended IVP. 0
THEOREM 4.9 (Theorem 3). If (tg,z9) € U C R x R™ and F : U — R™ is continuous along with gfi

in U, then there is a unique maximally extended solution to '(t) = F(t,z(t)), % = 0, z(ty) = =o for some

a,b, a < tg <bandz(t) =xzg fora <t <bisasolution. For A < a <ty <b< B, definez(t)=2xz0forA<t< B.
Then z(t) = z( fort € R is a maximally extended solution.

THEOREM 4.10 (Theorem 4). There is a maximally extended solution to =’ (t) = F'(t, z(t)), x(to) = xo.

PROOF. Pretty much just an exercise in logic. Extend until you can’t extend any more. Roughly, we can
extend until:
e We leave U.
e The solution goes to co. For example, z/(t) = 1+ z(¢)? has solution z(t) = tan(t — s) for some s, which
goes to infinity as can be seen by graphing tan.
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e The domain of definition is R, i.e a global solution.
(I

THEOREM 4.11 (Theorem 4). If (tg,z0) € U, U CR xR™ openand F : U — R™, ‘3—5 are continuous in U
then there is a solution to the IVP such that for any closed bounded set K with (to,z9) € K C U the graph of
intersects the boundary of K.

Example Jacobi

a'(t) = y(t)=(t)

y'(t) = —z(t)2(t)

Z(t) = —k*x(t)y(t)
for k £ 0. Note this can solved explicitly for £ = 0 as it is a linear constant coefficient equation.
2?2 4+ 42 and k222 + 2?2 are invariants. Also
2(t)? +y(t)? +2(1)* < x(t)® + y(t)” + K22(t)? + 2(1)* = 2(s)” + y(5)? + k2 (s)” + 2(s)?
for some s. Then this is
< x(8)? +y(s)% + 2(5)% + E2x(s)? + k%y(s)? + k*2(s)?

= @) +y(t) + 2(t)* < (1+ k) (x(s)” + y(5)* + 2(s)°)
or equivalently,
(1), y(0), 2(D)]] < (14 K2)2[(s), y(s), (s)]]

|

For x¢, 0, 20, to given, choose R > (1 + k?)2 ||z, yo, 20||. Define

k={(t,z,y,2) eR*:a <t < band||z,y,z2|| < R}

for a <ty < b, which has the following diagram: which must leave through the sides of the rectangle. We can
do this for any a, b so there is a global solution to the IVP.

We can combine the ideas from Theorem 1,2,3 into a huge theorem, but there is no point.
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5. Autonomous Systems

DEFINITION 5.1. An autonomous system is a differential equation of the form
' = F(x)
(not dependence).
DEFINITION 5.2. Time translation invariance means if x(t) is a solution then so is x(t — s) for any s.
Example Linear constant coefficient.
2 = Az

Example Jacobi System.

¥ =yzy = —xz2 = —k’zy

Example Van Der Pol.
o+ -2 +x=0
soz’ =vandv' = u(l —z?)v —a.

Example Predator-Prey.

N':rN(l—%)—aNP

P = —cP+bNP
where a, b, ¢, k, r are positive parameters, P is the number of predators and N is the number of prey.
Example Lorenz System.
¥=cly—z)y =re—y—x22 =zy—bz
for o,r, b positive parameters. First studied example of a chaotic system.
Example Damped Pendulum.

0" + ksin(0) + A\(0)0' =0
where k£ > 0 a constant and A > 0 a function.
5.1. Equilibrium.
DEFINITION 5.3. v is an equilibrium of
9) ' (t) = F(x(t))
if F(y) = 0 or equivalently, if x(t) = 1 is a solution.

Example Pendulum, undamped.

0" +ksind=0k>0
So 0/ = w, w' = —ksin 6 or equivalently,

()= ()

Equilibria occur where w = 0 i.e where ksin 6 = 0, so where § = nr for some integer n. There are only really 2
cases, where n is even (hanging straight down) and odd(straight up).

DEFINITION 5.4. « is an unstable equilibrium if for alle > 0 there is ad > 0 such that if 2/ (t) = F(z(t)) z(to) =
xo then
llzo =9l <0 = |lz(t) — [ <e
for allt > ty. Otherwise, 1) is an unstable equilibrium.
For the pendulum, the quantity w? + k cos 8 is invariant.

DEFINITION 5.5. v is a strictly stable equilibrium of (9) if it's stable andtiigl x(t) =+ provided ||xo—|| < 9.
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FIGURE 2. Phase Portrait for Pendulum

For undamped pendulum, 6” + ksin 6 = 0, then (0,6’) = (0, 0) is stable, but not strictly stable.
For damped pendulum,f” +k sin 6+ A(6")¢' = 0, A > 0, (0, 0) is a stable equilibrium and (=, 0) is always unstable.

Example Linear Constant Coefficient ' = Ax. ¢ is an equilibrium if and only if Ay =0, soif ¢ € N(A). If Ais
invertible then 0 is the only equilibrium.

Example Jacobi

¥ =yzy = —xz2 = —k’zy
(0,0,0) is an equilibrium, and in fact it is sufficient for any two of the functions to be 0, so any point on the
coordinate axes.
Example Van Der Pol
o =vv =p(l -2 -2
(0,0,0) is an equilibrium, and is the only one.
Example Predator-Prey

N
N'=rN(1— =) =aNP P' = —cP +bNP = P(~c+bN)

Then (N, P) = (0,0) is an equilibrium, along with (k,0). Similarly, letting N = =3¢ gives 0 = rN(1 + ;7 — aP)
giving P = 3% 5o (7, 1+ &) is another solution.

Example Lorenz

W

¥ =cly—x)y =rv—y—x22 =xy—bz
So (0,0,0) is an equilibrium. Also, letting - = y gives z = % and
3

rx—a:—? P —b(l—r)r=0=2=+/bl-7)=y = z2=1—7r

5.2. Stability.
Example Jacobi

llz(t), y(t), 2] < V1 + k2[|zo, Yo, 20|
and
[(z0,Y0,20) — (0,0,0)[| <& = [[(x(t),y(t),2(t)) — (0,0,0)]| <e

forall t > ty, i.e (0,0,0) is a stable equilibrium but it is not strictly stable. For example, ||(0, g, 0) — (0,0,0)|] < &
but the solution to the IVP (xq, yo, 20) = (0, 2, 0) does not go to (0,0, 0).

Then choose § = \/W

5.3. Invariants and Stability for Autonomous Systems. For the system
a'(t) = F(x(t))

fd]

I'is an invariant if 4> = 0 for all solutions. By the chain rule,

z:: ('9%

and I is invariant if and only if

Z [“)gcj =0

Note:The existence of an invariant does not |mply stability.
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Example
d=yy =z
The invariant is =2 4+ y? = I and 4 = 222’ — 2yy’ = 22y — 2yz = 0. (0,0) is an equilibrium but it is not stable.

2\ (01 x
y ) \10 y
xz(t) \ _ (t 01 )= cosht sinht xo
y(t) | eXP 1 0 )7 \ sinht cosht Yo
This is stable if for all e > 0 there is a § > 0 such that ||(zo.y0)|| < 6 = ||z(¢),y(¥)|] < ¢, so all solutions with

initial data near (0, 0) are bounded.
When is (z(t), y(t)) bounded?

lew01 = @o.00) (20 ) = o) ( Gor ot ) (r oy ) (20
= o) (o) S ) (1)
o (B S () deom () ()

1 1 _
:§€2t(x0~|—y0)2+§6 Zt(l'o—y(])2

which is unbounded if 2o 4+ yo # 0, so (0,0) is unstable.

SO

THEOREM 5.6. IfU C R™ is open, v € U, F : U — R™ continuously differentiable and I : U — R also
continuously differentiable. If I has a strict local minimum at £ then ¢ is a stable equilibrium but & is not strictly
stable.

Note: We didn’t assume that ¢ is an equilibrium.

Example e 2/ =y, 3y = —x which has invariant 2 + y? and has a strict local minimum at (0,0) so this

is a stable equilibrium.

e Jacobi System.
¥ =yzy = —xz2 = —k’zy
which has invariants @2 + y2, k?2% + 22, (1 + k?)2? + 2.
PROOF. ¢ is strict local minimum of I and there is an R > 0 such that
O0<|lz—¢|| <R =I(x)>1I(&)

then choose r > 0 such that » < min(R, €). Define

gt A
then J > I(&). Define
K={reU:|lz—-¢||<Rand I(z) = J}
and also define § = mingex ||z —&||, § > 0. If ||zg — &|| < d then I(x(t)) = I(xo) forall t > to so I(z(t)) < J and
[lz(t) — || < e so & isn't strictly stable.
Strictly stable is stable and tli>r20 x(t) = & whenever ||z — &|| < 4. I is continuous so

tim I(a(t)) = I ( Jim 2(t)) = 1(¢)

t—o0 t—o0
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if £ is strictly stable, which only happens if I(xo) = I(£). The only point z¢ near £ with I(zo) =1(€)iszo=¢. O

Example
o =2yy =32 -3
Which has equilibria at (1,0), (—1,0) and has invariant I = 2® + y* — 3z s0
ar o1 , oI, ) )
pril 6yy (32 —3)2y + (32° —3)2y =0

I is stationary where 3L = 322 — 3 = 0 and where g—fj = 2y = 0 so the stationary points are (1,0) and (—1,0)
also. Looking at the Hessian:

o’ 0%

ox? dx0y _ 6x 0

o’r 2L | T\ 0 2

Oyox Oy?

which is positive definite at (1,0) and indefinite at (—1,0) so (1,0) is a strict minimum of I, while (—1,0) is a
saddle point. So (1, 0) is a stable equilibrium but not strictly stable, while (—1,0) is an unstable equilibrium.

DEFINITION 5.7. With U, F as before, ¢ € U we say
L:U—R

is a Lyapunov function of
2/ (t) = F(x(t)) at¢
if:
e [ is continuously differentiable

e [ has a strict local minimum at £
e There is some p > 0 such that if

"\ JL
llo — €Il < p then ;%jum(m) <0
L is called a strict Lyapunov function if

"~ 0L
0<|lz—¢ll<p ﬁz:%(x)Fj(fc) <0
g=1""
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Note:If = is a solution to 2’ = F(z) then
d =~ 0L
aF(ﬂv(t)) = ; a—%(ﬁ(t))Fj(l’(t))
and f: %Fj < 0 implying L(z) is strictly increasing.
j=1 "’

Note:lf [ is an invariant and has a strict local minimum at ¢ then I is a Lyapunov function, but not a strict
Lyapunov function.

THEOREM 5.8. If L is a Lyapunov function for 2/ (t) = F(x(t)) at € then £ is a stable equilibrium. If L is a
strictly Lyapunov function then ¢ is strictly stable.

PROOF. Prove stability first.
As before,

|z =&l <0 = [la(t) €]l <e

forallt > tg. 0 < mingex ||z — &[], 6 > 0. If [Jzg — || < d then L(xo) < J. If [|z(t) — || <€, L(z(t)) > J.
Then prove strict stability.

If ||zo — &|| < 0 then [|z(t) — &|| < rforallt > t,. So > 2EF; < 0. Set
g=1 "’

oL
max —_— 1y
e<||z—&||<r 81’]' J

Zz =

(z)

So ULt)) ;< 0 and
L(z(t)) < L(zo) — (t —tg)z — —oc0 ast — +oo
as required. O

Example Damped Pendulum
0" + ksing+ \0)0 =0k >0
(10) 0 =ww =—ksinh — \w)w

Which has invariant I = w? — kcos 6 if A(w) = 0. L(f,w) = tw? — kcos6 is a Lyapunov function for (10) at
(0,w) = (nm,0) if n is even.
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PROOF. The stationary points of L satisfy

oL .
% = ksinf
oL
_— =W
Ow

then looking at the Hessian,

‘g}% 369256; [ kcosf 0
2°L o°L - 0 1
Owol Ow?

which is positive definite at (n, w) for n even which is a strict local minimum and is indefinite for n odd, which is
a saddle point.
%L(G(t),w(t)) = %9’ + ZTLUWI
= ksinfw — w(ksinf + Aw)w) = —A(w)w? <0
So then, by the theorem, (n,0) is a stable equilibrium for »n even.
L is not a strict Lyapunov function. Take the modified Lyapunov function

1
L(,w) = §w2 — kcosf + pwsin 6

Claim: If A > 0 then L is a strict Lyapunov function for (10) at (n=,0) and n odd.

OL i oL .
50 = ksinf + pwcos 6 o w ~+ psinf
which is still zero at (n7, 0). Then getting the components of the Hessian,
0*L 0%’L 0%’L
- — ing —— = e
502 kcosf — pwsinf ETER M00898w2
kcos® — uwsin® pcosd
pcosf 1
which is positive definite for sufficiently small .
oL oL, 0L ,
a(9(15),w(t) = %6) + Y

= (ksinf + pw cos @)w — (w + psin§) (ksin 6 + A(w)w)
= kwsin @ + pw? cos§ — kwsin @ — A(w)w? — kpsin® 6 — A(w)uw sin 0
We can rewrite this using the following substitutions:
a(f,w) =ku b0, w) = AMw)p c(8,w) = AMw) — psind
giving ax? + bry + cy? which is positive definite for small .
A0, w) = b* — dac = N2 p? — 4k + 4kp® cos < 0

for small positive . % < O unless (w,sin#) = (0,0). For small positive y, L is a strict Lyapunov function for (10)
at (nm,0) for n even. So these are strictly stable. O

5.4. Stability of Linear Autonomous Systems. Suppose =’ = Az, x = 0is an equilibrium. Is it stable? Is
it strictly stable?
Method 1:
Quadratic Lyapunov functions
(IT)/ _ xTAT
If L(z) = 27 Bz, B = BT then
%L(m(t)) = (xT)/ Bz +2TBa’ = 2T AT Bz + 2T BAx
=7 (ATB + BA) r=—2TCx
say. So then,
ATB4+BA+C =0
and also J
—L <
ZL(a(t)) <0
if C' is positive semi-definite and
d

£L(Jc(t)) <0

if C' is positive definite (assuming z(t) # 0).
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THEOREM 5.9. 0 is a strict stable equilibrium of ' = Ax if there are positive definite matrices B, C such that
ATB+BA+C=0.
0 is a stable equilibrium if there is a positive definite B and a positive semi-definite C such that

ATB4+BA+C=0
PROOF. L(x) = 2 Bz is a strict Lyapunov function in first case, Lyapunov in second case. O
Method 2:Just solve =’ = Azx.
z(t) = exp (tA) o
and then make a linear change of variable with y = V12
Yy =V =V Az =VAVy

By the assignment (5) 0 is a (strictly) stable equilibrium of 2/ = Ax if and only if 0 is a (strictly) stable equilibrium
ofy = V-1AVy.
We can always choose V so that J = V1AV is in Jordan normal form.

J, 0 0 A 1 ... 0
0 J 0
J=1 . where J,— | 0 M 0
: - 0 : 1
o ... 0 J 0 ... 0 M
each block of size my x my.
y'=Jy = y(t) = exp(t])yo
exp(tJ;) O 0
exp(tJ) = :
0 ... exp(tSy)
and then
exp(tA1) texp(thg) ... 7T 1%
exp(tJy) =
0 . exp(tAg)

then we have ||y(t)|| < ||exp(tJ)|||lyol| SO ||exp(tJ)|| bounded for ¢ > 0 which implies stability. Similarly,
|| exp(tJ)|| — 0 implies strict stability. Then,

| exp(t.J)|? = tr (exp(w)t exp(tJ))

and
exp(tJ)T exp(tJ;) O
exp(tJ1)T exp(tJ) = 0 :
0 ... exp(tS)T exp(tJl)
and
! !
lexp(tD)| = > tr (exp(t]k.) exp(tJy) ) 3 Il exp(t i)
k=1 k=1
mpg— 1 ] 2
_Z|9XP (Aet)]? Z (j ) (mk —7)
and then
lexp(Ait)|? = exp(Mit) exp(Art) = exp(Apt) exp(Axt)
= exp((Ax + Axt)) = exp(2ReAxt)
So then for:
) mk—l t2j
lexp(Aet)]” ﬁ(mk )
§=0

If A < 0 then this is bounded and goes to zero. If ReA, = 0 and m;, = 1 then bounded, otherwise not bounded.

DEFINITION 5.10. The geometric multiplicity of an eigenvalue A of A is
dim(N (A — XI)). The algebraic multiplicity is the order of vanishing of the characteristic polynomial of A at \.
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We then have
1 < Geometric Multiplicity < Algebraic Multiplicty

and the geometric multiplicity is equal to the algebraic multiplicity if and only if there are no off diagonal 1’s in
the Jordan blocks for A.

THEOREM 5.11. If all eigenvalues X\ of A have Re) < 0 then 0 is a strictly stable equilibrium of ' = Ax.
If all eigenvalues \ satisfy ReA < 0 and either Re\ < 0 or algebraic multiplicity of \ is equal to geometric
multiplicity then 0 is a stable equilibrium.

PROOF. See previous calculation of || exp(tJ)]|. O

Example General 2 x 2 case.

w =au+ Bvv =~yu+dv

[ u [ a B
()= (7 7)
When is 0 stable? Strictly stable?

Characteristic polynomial: A2 — trAX + det A, which has roots (eigenvalues) A = r + VA, r = %trA, A =
(trA)? —4det A = 4(r* — det A). We then consider 4 cases:
Case 1: A > 0 so distinct real roots A, A\_ =7+ +vA. Then A\ + A_ =trA = 2r, A\ A_ = det A.

Then 2’ = Ax with

A, Ao <& r<0,det A>0
A, Ao <0< r<0,detA>0
Case 2:A < 0 so has complex conjugate eigenvalues r & iv/A. For both, Re\ = r.
ReA<0<er<0, ReA<0&s7r<0
Case 3: A = 0 so double real root A = r. If the geometric multiplicity is 1 then
Re) < 0 < r < 0 strict stability

and ReX < 0 & r < 0 but algebraic multiplicity is not equal to geometric multiplicity so » = 0 is not stable.
Case 4:A = 0so A\ = r is a double root.

ReX < 0 < r < 0 strictly stable

and Re) < 0 & r < 0 and geometric multiplicity equal to algebraic multiplicity so stable. Geometric multiplicity
is equal to algebraic which is equal to 2 = dim(N(A — XI)) & A= Al.




36 CONTENTS

THEOREM 5.12. There are positive definite B, C such that AT B + BA + C = 0 if and only if all eigenvalues
A satisfy Re\ < 0.
There are positive definite B positive semi-definite C such that AT B+BA+C = 0 if and only if for all eigenvalues
A, ReX <0 and either ReX < 0 or the geometric multiplicity is equal to the algebraic multiplicity.

PRrooF. We will only outline it and then prove the 2 x 2 case.First, we can replace A by any similar matrix
A =V~1AV. Suppose ATB+ BA+ C = 0. Set B =V TBV~! where VU = yvT o=V-TCV-1, A=
VAV~L. Then

ATB+ BA+C = (VAV*)T (V*TBV*) n (V*TBV*) (VAV*I) yV-Toy!

— VT (ATB+ BA+C) VT =0
If ATB+BA+C=0thenset B=VTBV, C =VTCV so AB+ BA+C =0.
For the 2 x 2 case, we consider 4 cases once again:

A0
0 A

> satisfies ATB+ BA+C =0.1f A\, X2 <0

(1) A > 0 then two real roots (eigenvalues). Jordan form of A is ( ) Replace A by it’s Jordan

form. If A\i,\s < Othentake B— 1. ¢ = ( ~2M U
0 —2X
then can take any B, C.

(2) A < 0 then has complex conjugate roots. Av = v\ and AT = ©A. Take A = a +ib, v = x + iy with

a,b,z,y real.
v+T VA 4 v\
Ax—A( 3 )— 3 =za — yb
v—7T VA — TA
Ay-A( % )— % =zb+ ya
So we have
a b pe a b
(o) (o) (s ) an (s )
—2a 0

Then ReA = RedA =a. lfa < 0then B=Tand C = 0 —2%
B, C positive definite. If a < 0 then C' is positive semi-definite.

(3) A = 0 gives a repeated real root so A is similar to it's Jordan form(g‘ ?\)or(é i\) Take
1 0
B= .
(0 M)
AP r_ (A0 ro_ (A O (A1
IfA_<O A)thenA _<1 /\)soAB_<1 )\u>’BA_(O )\u).

ATB+BA:(21>‘ Qiu>S°C:(_2A —1 )

> satisfies ATB+ BA + C = 0, with

If A\ < 0then B, C are positive definite if we choose i > 0.
AN —1>0 :>u>L
42
If A < 0 then there is nothing to prove.
4) A= ( 8‘ ?\ then take B = I and C = —2A. B is positive definite and C is positive definite if A < 0
and positive semi-definite if A < 0 for the 2 x 2 case.

U
The eigenvalue problem implies the existence of a solution to AT B + BA + C = 0.

For linear systems, (strict)stability is equivalent to the existence of a (strict) Lyapunov function, which is equiva-
lent to the eigenvalue condition.
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5.5. Linearisation. Suppose ¢ is an equilibrium of :Jc’(t) = F(z(t)), F(&) = 0. Then, Taylor expanding,

Fj(x Z (zk — &) + remainder
k=
F;(€) =0 as ¢ is an equilibrium so set
OF;
Ajp = a?,c(f) Yk = (xr — &)

so Fj(z) = Z A; kyr + remainder and y'(t) = 2’(t) = F(z(t)) = Ay(t) and the error is small compared to ||y/|.
We hope the stablllty properties of ¢ as equilibria of 2/ = F o x are the same as those of 0 as equilibrium of
y = Ay.

THEOREM 5.13. If0 is a stable equilibrium of the linearised equation then & is a strictly stable solution of the

non-linear equation.
Note: The converse is false and the theorem doesn’t hold if we drop the word strict.

So for y’ = Ay and y = = — £ should approximately satisfy ¢y = Ay.
Warning: If the linearised system has a stable, but not strictly stable equilibrium at 0 then we learn nothing
about ¢ as an equilibrium of 2/ = F o z.

Example
(11) ' = —v 4 o +v¥u, v =u+ a(u® 4+ 0v?)v
Then set w = u? + v? s0 w’' = 2uu’ + 2vv’ = 2a(u? + v?)? = 2aw?. This is a separable equation, namely

dw 9

dw
Ez?aw :ﬁ:2adt
Integrating this from w(ty) = wp gives
1 1
— — — =2(at — apt)
wo w
SO
1 Wo

w =
- —2(at — aot) 14+ 2atowy — 20wt

wo
If « = 0 then w = wy (invariant) is stable, but not strictly stable.

Ifa>0then lim w(t) = oo and all non-equilibrium solutions blow up in finite time, so not stable.
t—to+——

awq

If @ < 0 then thm w(t) = 0s0 ||(u,v) — (0,0)]] — 0. w is monotone decreasing so strictly stable. (11) has the
—00

same linearisation at (0, 0) independent of a. In this case A = ( (1) _01 )

THEOREM 5.14. With F,¢, A as before, if ATB + BA + C = 0 with B,C positive definite then V (z) =
(x — 6T B(x — €) is a strict Lyapunov function for ' = F o x at¢.

PROOF. ltis clearly continuously differentiable with a strict local minimum at £&. For monotonicity,

cclit (Z ox; 7 ) D)

and to evaluate this,

and

Fi(x) =Y Ajular — &) + oz — &)
=1
using ‘little o’ notation. So then the derivative is equal to:

(, g;(:c)ﬂ) (z) = 2ZAj,sz,k<wk — &) (@ — &) + ol — &%)
=20z —&)T(ATB)(x — &) + o(llx — &[?) = (x — )T (AT B+ BA)(z — &) + o(|lx — £1?)
—(z—)"C@—& +o(lz—¢lI*) <0
if0 < |lz— €| <. O
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THEOREM 5.15. If 0 is a strictly stable equilibrium of v = Ay then £ is a strictly stable equilibrium of
= Foux.
Eigenvalues of A having negative real part implies the equilibrium is strictly stable.

THEOREM 5.16. [f the linearisation of x’ = F o x at ¢ is unstable then ¢ is an unstable equilibrium.

We will not prove this.
Example Jacobi System.

¥ =yzy = —xz2 = —k’zy
Then we get
oz’ oz’ 0z’
Bacl (r)y/ Bz/ 0 z Yy
_ Oy dy Oy _ _ _
A= Ox Oy Oz - z 0 x
R —k?y —k%*x 0
ox oy 0z

At (z,y,2) = (0,0,0), A is the zero matrix so linearisation is stable but not strictly stable so it provides no
information about the system. At the other equilibria, the same thing happens.

Example Damped pendulum.
0 =ww = —ksinf — AMw)w, A >0

26’ o6’ 0 1
A= 90, ow, —
Qo Qe ( —kcosf —Aw)—wN(w) )
and at (0, w) = (nm,0), this is equal to < (_l)qlﬂk _)\1(0) ) Then, tr(A) = —A(0) and det(A) = (—1)"k. If n

is even and A(0) > 0 then the linearisation is strictly stable, so equilibrium is strictly stable. If n odd then there is
an eigenvalue with positive real part, so linearisation is unstable and the damped pendulum is unstable.
Example Predator Prey.

then

N' =PN(1- %) —aNP P' = —cP +bNP
with all parameters positive. The equilibria are
C C

(N7 P) € {(070)’ (k70)’ (bma(l - %))}

and then
8 ’ a ’
(FE)-(mr )
N 9P bNP —c+bN
At (0,0),A = 6 _OC ) and the linearisation is unstable so (0,0) is an unstable equilibrium. At (k,0)A =
—r —ak

0 —c+ bk and we then have several cases. If bk < ¢ then the linearisation is strictly stable so (k, 0) is

strictly stable. If bk > ¢ then the linearisation is unstable so (k,0) is unstable.
Example Lorenz System.

¥=cy—x)y =re—y—xz2 =zy—0bz
which has equilibria (0, 0,0) and (&+/b(r — 1), £+/b(r — 1),7 — 1) and once again

%iz s —0 o 0

A= : = r—z —1 —x

' a2’ Y x b

0z

The method we used previously only works for the 2x 2 case, but in general we can use the Routh-Hurwitz algorithm
to determine when the eigenvalues have negative real part.




