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1. Introduction

1.1. Basic Examples and Definitions.
Example The Harmonic Oscillator has the following equation

(1)
d2x

dt2
+ ω2x = 0

which can also be written as
x′′(t) + ω2x = 0

where x is the dependent variable, t is the independent variable and ω is the parameter. We differentiate
dependent variables with respect to independent ones, and anything left over is a parameter.

DEFINITION 1.1. A differential equation is called ordinary if there is one independent variable

It is called partial if there is more than one independent variable. A scalar equation or system of equations has
one dependent variable. A vector equation/system has more.

Usually, number of dependent variables equals the number of equations.

Example Maxwell’s Equations have 6 dependent variable and 8 independent variables.

DEFINITION 1.2. The order of a differential equation is the order of the highest derivative.

Eg, d
2x
dt2 + ω2x = 0 has Order 2.

Example

(2)
dx

dt
− v = 0,

dv

dt
+ ω2x = 0

which is a first order system, with dependent variables x and v, independent variable t and parameter 1. This
system is equivalent to the harmonic oscillator.
If x and v are solutions to (2) then x is a solution of (1). Similarly, if x is a solution of (1) then x, dvdt = v are
solutions of (2).
Any differential equation or system is equivalent to a first order system or equation. This can be done by
introducing extra dependent variables for lower derivatives, known as reduction of order. It is used mostly in
proving theorems.

DEFINITION 1.3. A linear equation or system is a linear equation (in the algebraic sense) in derivatives of
dependent variables and the coefficients are functions of independent variables and parameters, not dependent
variables.

Example Legendre

(1− x2)
d2y

dx2
− 2x

dy

dx
+ v(v + 1)y = 0

is a second order linear scalar, dependent variable y, independent variable x, and parameter v. It is a linear
equation in d2y

dx2 ,
dy
dx , y, with coefficients 1− x2,−2x, v(v + 1). The Harmonic Oscillator is linear in d2x

dx2 ,
dx
dt , x with

coefficients 1, 0, ω2.

DEFINITION 1.4. An equation is called linear constant coefficient if it’s coefficients are functions of the
parameters, not dependent or independent variables.

Independent variables and parameters will be real in this course, dependent variables are usually real.

Example Non Linear: Pendulum
d2θ

dθ2
+ sin θ = 0

For small θ, sin θ ≈ θ so
d2θ

dθ2
+ θ ≈ 0

We hope both solutions are similar to those for the harmonic oscillator with ω = 1

2. Linear Equations

2.1. Homogeneous, Inhomogeneous, Existence and Uniqueness.
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2.1.1. Homogeneous, Inhomogeneous. Homogeneous means all terms are of degree d. Inhomogeneous
means all terms are of at most degree d.
Harmonic Oscillator d

2x
dt2 + ω2x = 0 is a Linear Homogeneous Equation.

Forced Harmonic Oscillator d
2x
dt2 + ω2x = A cos(vt+ φ) is an inhomogeneous linear equation.

ax = b is homogeneous while ax = 0 is inhomogeneous.

THEOREM 2.1. The set of all solutions of a linear homogeneous differential equation is a vector space

PROOF. S = the set of functions x satisfying x′′+ω2x = 0 Suppose x1, x2 ∈ S⇒ x′′1 +ω2x1 = 0 x′′2 +ω2x2 = 0
Let x = c1x1 + c2x2 Then x′ = c1x

′
1 + c2x

′
2 and x′′ = c1x

′′
1 + c2x

′′
2 .

So x′′ + ω2x = c1(x1; ; +ω2x1 + c2(x2 + ω2) = 0
⇒ x ∈ S, with basis = {cos(ωt), sin(ωt)} Suppose x1, x2 satisfy x′′ + ω2x = f(x). Then x1 − x2 = x satisfies
x′′ + ω2x = 0, where x′′ is the corresponding homogeneous equation.

x′′1 + ω2x1 = f(x), x′′2 + ω2x2 = f(x)

x = x1 − x2, x
′ = −x′1 + x′2, x

′′ = x′′1 + x′′2

⇒ x′′ + ω2x = x′′1 + ω2x1 − x′′2 − ω2x2

= f(x)− f(x) = 0

�

The general solution to the inhomogeneous problem is any particular solution plus a solution to the corre-
sponding homogeneous problem.

2.1.2. Existence, Uniqueness. Given an ordinary differential equation and conditions, we can ask

(1) Existence-Is there a solution?
(2) Uniqueness-Is there at most one?
(3) What is the solution? Explicitly? Numerically?
(4) How regular is the solution? Is it differentiable?
(5) What is the limiting behaviour?
(6) How do the solutions depend on parameters? Conditions?
(7) Are there invariants of the equation?

Example Invariants d2x
dt2 + ω2x = 0

I = (
dx

dt
)2 + ω2x2

dI

dt
= 2(

dx

dt
)(
d2x

dt
) + 2ω2x

dx

dt
= 2

dx

dt
(
d2x

dt2
+ ω2x) = 0

⇒ I is locally constant for solutions.

THEOREM 2.2. If x : R→ R satisfies x′′ + ω2x = 0 then I(t) = x′(t)2 + ω2x(t)2 is constant.

THEOREM 2.3. If x : R → R is a twice differentiable (continuous) function satisfying x′(t)2 + ω2x(t)2 =
constant
Then x′′(t) + ω2x(t) = 0 or x is a constant.



6 CONTENTS

2.2. First Order Scalar Equations. Of the form

F (x, y,
dy

dx
) = 0

Take dy
dx = xy say.

Formally,
∫
dy
y =

∫
xdx, integrating from (x0, y0)

ln(y)− ln(y0) = x2

2 −
x2
0

2 ⇒ ln(y)− x2

2 = ln(y0)− x2
0

2 =constant.

ye−
x2

2 = c a constant. ⇒ y = ce
x2

2 and c = y0e
− x

2
0
2

We need to prove:

(1) y(x) = ce
x2

2 , c = y0e
− x

2
0
2 solves dy

dx = xy and y(x0) = y0

(2) If y solves dy
dx = xy, y(x0) = y0 then y(x) = ce

x2

2 , c = y0e
− x

2
0
2

PROOF. (a)

y(x) = ce
x2

2 ⇒ dy

dx
= ce

x2

2 x = xy

y(x0) = ce
x20
2 = y0e

− x
2
0
2 e

x20
2 = y0

(b) dy
dx = xy, y(x0) = y0 Let z(x) = y(x)e−

x2

2 Then

dz

dx
=
dy

dx
e−

x2

2 + ye6−x
2

2
(−x) = e−

x2

2 (
dy

dx
− xy) = 0

dz
dx = 0 ⇒ z is constant. So z(x) = z(x0).

⇒ y(x)e−
x2

2 = y0e
− x

2
0
2 = c so y(x) = ce

x2

2

�

Checking that a given solution works is (almost) always purely mechanical. Will normally skip this step.
To prove uniqueness look for invariants.

Example dy
dx = x2y2

Formally,
∫
dy
y2 =

∫
x2dx

−1

y
+

1

y0
=
x3

3
− x3

0

3

⇒ 1

y
+
x3

3
=

1

y0
+
x3

0

3
= c (const)

1

y
= c− x3

3
⇒ y =

1

c− x3

3

Which has a singularity when x = 3
√

3c. Elsewhere, y(x) = 1

c− x33
is a solution of dydx = x2y2 which can easily be

checked (if bored).
Are there any other solutions?
Take z(x) = 1

y(x) = x3

3 Then dz
dx = −

dy
dx

y2 + x2 = −x
2y2

x2 = 0 so z is constant. ⇒ z(x) = z(x0) = c ⇒ 1
y + x3

3 =

c ⇒ y = 1

c− x33
and 1

y0
+

x3
0

3 = c So y = 1

c− x33
are the only solutions to dy

dx = x2y2 Or are they?

Exception:y = 0 is a solution. In the definition of z we divide by y which could be 0. Division by 0 can lose
solutions. Why did Ex.1 work then?
y(x) = ce

x2

2 = 0 if y0 = 0, so we just got lucky.

2.2.1. Separable Equations. Suppose dy
dx = M(x)

N(y) where M,N are continuous. Also, assume for now that
N has no zeroes.
In dy

dx = xy, M(x) = x, N(y) = 1
y and similarly in dy

dx = x2y2, M(x) = x2, N(y) = 1
y2 In general:

dy
dx = M(x)

N(y) ⇒
∫
N(y)dy =

∫
M(x)dx integrating from (x0, y0). By the Fundamental Theorem of Calculus (FTC),

∃ϕ, ψ with ϕ′ = M, ψ′ = N

χ(y)− χ(y0) = φ(x)− φ(x0) ⇒ ψ(y)− ϕ(x) = ψ(y0)− ϕ(x0) = const.

ψ is strictly monotone, so it is invertible and this equation can be solved for y I(x) = ψ(y(x)) − ϕ(x) should be
invariant. ψ(y(x)) = ϕ(x) + C, where C = I(x0) ψ is invertible, so ∃η s.t η ◦ ψ = ψ ◦ η = id

⇒ η(ψ(y(x))) = η(ϕ(x) + c) = y(x)

Claim:
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(1) y(x) = η(ϕ(x) + c) is a solution to dy
dx = M(x)

N(y)

(2) If dydx = M
N then y(x) = η(ϕ(x) + c) for some c.

PROOF. (1) y′(x) = η′(ϕ(x) + c)ϕ′(x) Also, (ϕ′ ◦ η)η′ = 1 ⇒ η′ = 1
ψ′◦η

y′(x) =
1

ψ′(η(ϕ(x) + c))
ϕ′(x) =

M(x)

N(y(x))

(2)

y′(x) =
M(x)

N(y(x))

I(x) = ψ(y(x)) − ϕ(x) and c = ψ(y0) − ϕ(x0) Then I ′(x) = ψ′(y(x))y′(x) − ϕ(x) = N(y(x))y′(x) −
M(x) = 0 So I(y(x)) = c i.e ψ(y(x))− ϕ(x) = c ⇒ ψ(y(x)) = ϕ(x) + c Then,

η(ψ(y(x))) = η(ϕ(x) + c) = y(x)

�

Note: Equations of the form dy
dx = P (x)Q(y) are equivalent to the separable equation dy

dx = M(x)
N(y) with M =

P, N = 1
Q away from zeroes of Q, where we get constant solutions y(x) = y0

Example dy
dx = y

2
3 = M(x)

N(y) with M(x) = 1, N(y) = y−
2
3 Then ϕ(x) = x, ψ(y) = 3y

1
3 ⇒ z = 3y

1
3
z
3 = y

1
3

⇒ z3

27 , η(z) = z3

27 so y(x) = η(ϕ(x) + c), y(x) = (x+c)3

27 and can check that this works. Are these all the solutions
to dy

dx = y
2
3 ?

No, y(x) = 0 is also a solution. So y(x) = { (x+c)3

27 , 0} are these all the solutions? No

If c1 < c2 then

f(x) =


(x+c32)

27 x ≤ −c2
0 −c2 ≤ x ≤ −c1
(x+c1)3

27 x ≥ −c1
Which is a solution to dy

dx = y
2
3 which is obvious except for x = −c2, x = −c1.

Derivative at −c1 :

= lim
x→−c1

y(x)− y(−c1)

x+ c1
=

{
0 −c2 ≤ x < −c1
(x+c1)2

27 −c1 < x

lim
x→−c1

y(x)− y(−c1)

x+ c1
= 0

so y′(−c1) = y(−c1) = 0 and y′(−c1) = y(−c1)
2
3 c2 is similar so dy

dx = y
2
3 everywhere. Note the non trivial part is

the existence of y′ at −c1, −c2
Unlike the other examples, the initial value problem

dy

dx
= y

2
3 y(x0) = y0

has multiple solutions.
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2.2.2. Exact Equations.
dy

dx
=
M(x, y)

N(x, y)

with some conditions on M,N
Suppose I(x) = U(x, y(x)) = C Then

I ′(x) =
∂U

∂x
(x, y(x)) +

∂U

∂y
(x, y(x))

dy

dx
= 0 if U continuously differentiable

dy

dx
=
−∂U∂x
∂U
∂y

M(x, y) =
∂U

∂x
(x, y) N(x, y) = −∂U

∂y
(x, y)

If U is twice continuously differentiable then

−∂N
∂x

=
∂2U

∂x∂y
=

∂2U

∂y∂x
=
∂M

∂y

There is no U with ∂U
∂x = M, ∂U

∂y = −N unless ∂M
∂y + ∂N

∂x = 0

LEMMA 2.4. (Poincaré) If in a disc ∂M
∂y + ∂N

∂x = 0, M,N ∈ C1 then there is a U ∈ C2 in the same disc with
centre ξη where ∂U

∂x = M, ∂U
∂y = −N

PROOF.

U(x, y) =

1∫
0

[(x− ξ)M(tx+ (1− t)ξ, ty + (1− t)η)− (y − η)N(tx+ (1− t)ξ, ty + (1− t)η)]dt

Note: This is never the best way to find U . �

Example dy
dx = 2x−y

x−2y

M(x, y) = 2x− y N(x, y) = x− 2y ∂M
∂y = −1 ∂N

∂x = 1 ∂M
∂y + ∂N

∂x = 0

So ∂U
∂x = M = 2x− y ∂U

∂y = −N = −x+ 2y

U(x, y) = x2 − xy + f(y), f(y) a sort of constant of integration.
∂U
∂y = −x − 2y = x + f ′(y) so f ′(y) = 2y ⇒ f(y) = y2 + C a constant of integration. We can take C = 0 so
U(x, y) = x2 − xy + y2 and dy

dx = 2x−y
x−2y ⇐⇒ U(x, y(x)) is constant. U(x, y(x)) = U(x0, y(x0) = U(x0, y0) so

x2 − xy + y2 = x2
0 − x0y0 + y2

0 = c which is the equation of an ellipse.

y2 − xy + x2 − c = 0

From the quadratic formula,

y(x) =
x±

√
(−x)2 − 4(x2 − c)

2
=
x±
√

4c− 3x2

2

which is defined only for 3x2 ≤ 4c, i.e, |x| ≤
√

4c
3 ≤

√
4
3 (x2

0 − x0y0 + y2
0) So it is differentiable for |x| ≤√

4
3 (x2

0 − x0y0 + y2
0)
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To choose the sign, use the initial conditions,

y0 =
x0

2
±
√

4c− x2
0

2

Choose + if y0 >
x0

2 , choose − if y0 <
x0

2

dy
dx = M(x,y)

N(x,y) is called exact if ∂M∂y + ∂N
∂x = 0, dy

dx = F (x, y) It is exact if there are M,N such that M = NF and
∂M
∂y + ∂N

∂x = 0

Question: How do we know if there are such M,N? Answer: We don’t

Example
dy

dx
=
x+ y

x− y
⇒M = x+ y N = x− y ∂M

∂y
= 1

∂N

∂x
= 1 2 6= 0

There is no U such that ∂U∂x = x+ y, ∂U
∂y = −x+ y. This choice of M,N doesn’t work. Does some other choice

work? Yes, but hard to find. What else can go wrong?
• May not be able to evaluate integrals in closed form
• U(x, y) = C may not be solvable for y as an explicit function of x.

For example,
∫
e−x

2

dx and
∫
y−1e−ydy have no elementary indefinite integrals.

Example
dy

dx
=

1 + cos(x+ y)

1− cos(x+ y)

Take M(x, y) = 1 + cos(x + y) = ∂U
∂x and N(x, y) = 1 − cos(x + y) = −∂U∂y while ∂M

∂y = − sin(x + y), ∂N
∂x =

sin(x+ y) so ∂M
∂y + ∂N

∂x = 0 Integrating, U(x, y) = x+ sin(x+ y) + f(y) where f(y) is a ’constant’ of integration.
∂U
∂y = cos(x + y) + f ′(y) = −N(x, y) = cos(x + y) − 1 So f(y) = −y + C where C is a constant of integration,
which we can ignore as we only need one invariant. Then U(x, y) = x− y + sin(x+ y)
To find solutions: x− y + sin(x+ y) = x0 − y0 + sin(x0 + y0) = c We can plot y − x = sin(x+ y)− c which gives
different solutions for different values of c

FIGURE 1. Rotated Sine waves for different C
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2.3. Homogeneous First Order Linear Equations. Consider dx
dt = a(t)x and note this is a separable

equation so we can solve it.
dx
x = a(t)dt and we integrate from (x0, t0)

Then, log(x)− log(x0) =
t∫
t0

a(s)ds so x
x0

= exp(
t∫
t0

a(s)ds) so

x(t) = x0 exp(

t∫
t0

a(s)ds)

Example x′(t) = tx as was solved previously.
Then

x(t) = x0 exp(

t∫
t0

sds) = x0 exp(
t2

2
− t20

2
) = x0 exp(

−t20
2

) exp(
t2

2
) = c exp(

t2

2
)

2.4. Inhomogeneous Linear Equations. Of the form: dx
dt = a(t)x+ b(t), x(t0) = x0

Note: If x1, x2 are solutions to x′ = ax+ b i.e x′1 = ax1 + b, x′2 = ax2 + b then x = x1 − x2 satisfies x′ = ax
To find all solutions to x′ = ax+ b we need one solution to x′ = ax+ b and all solutions to x′ = ax
For the homogeneous problem

y(t) = x(t) exp

− t∫
t0

a(s)ds


is an invariant, and x(t) = c exp

(
t∫
t0

a(s)ds

)
Question: Is y an invariant of x′ = ax+ b?
Answer: No if b 6= 0

y(t) = x′(t) exp

− t∫
t0

a(s)ds

− x(t) exp

− t∫
t0

a(s)ds

 a(t)

= [x′(t)− a(t)x(t)] exp

− t∫
t0

a(s)ds

 = b(t) exp

− t∫
t0

a(s)ds


Note: There are no x′s on RHS.

y(t)− y(t0) =

t∫
t0

y′(s)ds =

t∫
t0

b(s) exp

− s∫
t0

a(r)dr

 ds

y(t) = y0 +

t∫
t0

b(s) exp

− s∫
t0

a(r)dr

 ds

Then, x(t) = y(t) exp

(
t∫
t0

a(s)ds

)
so, using above,

x(t) = y0 exp

 t∫
t0

a(s)ds

+ exp

 t∫
t0

a(r)dr

 t∫
t0

exp

− t∫
t0

a(r)dr

 b(s)ds

Substituting in above shows x0 = y0 so

x(t) = x0 exp

 t∫
t0

a(s)ds

+

t∫
t0

exp

 t∫
s

a(r)dr

 b(s)ds

What did we just prove?
If

(3) x′(t) = a(t)x(t) + b(t), x(t0) = x0
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then

(4) x(t) = x0 exp

 t∫
t0

a(s)ds

+

t∫
t0

exp

 t∫
s

a(r)dr

 b(s)ds

Conversely, if (4), then (3).

PROOF.

x′(t) = x0 exp

 t∫
t0

a(s)ds

 a(t) + exp

 t∫
t

a(r)dr

 b(t) +

t∫
t0

exp

 t∫
s

a(r)dr

 a(t)b(s)ds

= a(t)x(t) + b(t) and x(t0) = x0

�

Example x′ = tx+ 2t− t3. Then a(t) = t, b(t) = 2t− t3

x(t) = x0 exp

 t∫
t0

sds

+

t∫
t0

exp

 t∫
s

rdr

 (2s− s3)ds

With initial conditions (t0, x0) = (0, 0) then

x(t) =

t∫
0

exp

 t∫
s

rdr

 (2s− s3)ds =

t∫
0

exp

(
t2

2
− s2

2

)
(2s− s3)ds

Changing the variable to σ, σ = s2

2 , dσ = sds then

x(t) = 2 exp

(
t2

2

) t2

2∫
0

exp(−σ)(1− σ)dσ

where
t2

2∫
0

exp(−σ)(1− σ)dσ = −

t2

2∫
0

(1− σ)
d

dσ
exp(−σ)dσ

= −

t2

2∫
0

d

dσ
[(1− σ) exp(−σ)]dσ +

t2

2∫
0

exp(−σ)
d

dσ
(1− σ)dσ

Also,
t2

2∫
0

exp(−σ)
d

dσ
(1− σ)dσ =

t2

2∫
0

(− exp(−σ))dσ =

t2

2∫
0

d

dσ
(exp(−σ))dσ

so
t2

2∫
0

exp(−σ)(1− σ)dσ =

t2

2∫
0

d

dσ
[σ exp(−σ)]dσ =

t2

2
exp

(
− t

2

2

)
so x(t) = t2 satisfies x′ = tx+ 2t− t3.

3. Linear Systems

Systems of the form:
x(t) = A(t)x(t) + b(t) x(t0) = x0

where t, t0 is a scalar, x0 a vector, x, b are vector valued functions and A is a (square) matrix valued function.
Note: No loss of generality in restricting to first order.
We hope that...

x(t) = exp

 t∫
t0

A(s)ds

x0 +

t∫
t0

exp

 t∫
s

A(r)drb(s)

 ds

Questions:

(1) Can we define a matrix exponential sensibly?
(2) Is this a solution to x′ = Ax+ b?
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Answers:

(1) Yes, mostly.
(2) No in general, sometimes yes.

3.1. Matrices.

DEFINITION 3.1. For

A =

 a1,1 . . . a1,n

...
. . .

...
am,1 . . . am,n


we define the matrix norm ||A|| to be

||A|| =

√√√√ m∑
i=1

n∑
j=1

|ai,j |2

||A|| has the following properties

• ||A|| =
√
trace(AAt) =

√
trace(AtA)

• ||A+B|| ≤ ||A||+ ||B||
• ||µA|| = |µ|||A||
• ||AB|| ≤ ||A||||B|| note inequality here.

Sequences and Limits of Sequences of matrices can also be defined.

DEFINITION 3.2. We say lim
n→∞

An = L if ∀ε > 0,∃N such that

n > N ⇒ ||An − L|| < ε

Properties:
• lim
n→∞

(µA+ νB) = µ lim
n→∞

An + ν lim
n→∞

Bn

• lim
n→∞

AnBn = ( lim
n→∞

An)( lim
n→∞

Bn)

A series converges if the sequence of partial sums does.

Exponential Series: exp(A) =
∞∑
n=0

1
n!A

n converges for all A.

Examples:

exp([a]) =

∞∑
n=0

1

n!
[a]n =

∞∑
n=0

(
1

n!
an
)

=

( ∞∑
n=0

1

n!
an

)
= [exp(a)]

exp


 λ1 . . . 0

...
. . .

...
0 . . . λm


 =

∞∑
n=0

1

n!

 λ1 . . . 0
...

. . .
...

0 . . . λm


n

=

∞∑
n=0


λn1
n! . . . 0
...

. . .
...

0 . . .
λnm
n!



=

 exp(λ1) . . . 0
...

. . .
...

0 . . . exp(λm)


Another example:

exp

((
0 θ
−θ 0

))
=

∞∑
n=0

(
0 θ
−θ 0

)n

(
0 θ
−θ 0

)n
=



(
θn 0
0 θn

)
if n ≡ 0(mod4)(

0 θn

−θn 0

)
if n ≡ 1 (mod4)(

−θn 0
0 −θn

)
if n ≡ 2 (mod4)(

0 −θn
θn 0

)
if n ≡ 3 (mod4)

=

∞∑
k=0

(−1)k

2k!

(
θ2k 0
0 θ2k

)
+

∞∑
k=0

(−1)k

(2k + 1)!

(
0 θ2k+1

−θ2k+1 0

)
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=


∞∑
k=0

(−1)k

2k! θ
2k 0

0
∞∑
k=0

(−1)k

2k! θ
2k

+

 0
∞∑
k=0

(−1)k

(2k+1)!θ
2k+1

−
∞∑
k=0

(−1)k

(2k+1)!θ
2k+1 0


=

(
cos θ sin θ
− sin θ cos θ

)
Example

exp

((
0 θ
0 0

))
=

(
1 0
0 1

)
+

(
0 θ
0 0

)
+ 0 + 0 =

(
1 θ
0 1

)
as all higher powers of the matrix are zero. It then follows that

exp

((
0 θ
0 0

))
exp

((
0 0
−θ 0

))
=

(
1 θ
0 1

)(
1 0
−θ 1

)
=

(
1− θ2 θ
−θ 1

)
but a similar computation yields

exp

((
0 0
−θ 0

))
exp

((
0 θ
0 0

))
=

(
1 θ
−θ 1− θ2

)
and also

exp

((
0 θ
0 0

)
+

(
0 0
−θ 0

))
=

(
cos θ sin θ
− sin θ cos θ

)
In general, exp(A) exp(B) and exp(B) exp(A) are distinct. (A+B)n =

∑
j+k=n

n!
j!k!A

jBk if AB = BA, so exp(A+

B) = exp(A) exp(B) = exp(B) exp(A) if BA = AB
Example: exp((s+ t)A) = exp(sA+ tA) = exp(sA) exp(tA) = exp(tA) exp(sA) if s = −t.
I = exp(−tA) exp(tA) = exp(tA) exp(−tA) and

exp((s+ t)A)− exp(tA)

(s+ t)− t
=

exp(sA) exp(tA)− exp(tA)

s
=

(exp(sA)− I) (exp(tA))

s

=

( ∞∑
n=1

sn−1

n!
An

)
exp(tA), and

∞∑
n=1

sn−1

n!
An = A

so
d

dt
exp(tA) = lim

s→0

exp((s+ t)A)− exp(tA)

s
= A exp(tA) = exp(tA)A

For example, d
dt [exp(tA)x0] = [ ddt exp(tA)]x0 + 0 = A exp(tA)x0 i.e, x(t) = exp(tA)x0 is a solution of x′ = Ax.

Conversely, if x′ = Ax then set y = exp(−tA)x so dy
dx = − exp(−tA)Ax+ exp(−tA)x′.

y′ = exp(−tA)(x′−Ax) = 0 ⇒ y is constant. x0 = exp(−tA)x(t) ⇒ exp(tA)x0 = exp(tA) exp(−tA)x(t) = x(t)
So x(t) = exp(tA)x0 is the unique solution to x′ = Ax, x(0) = x0 and x(t) = exp((t− t0)A)x0 is the solution of
x′(t) = Ax(t), x(t0) = x0

Example x′′ + x = 0, x′ = v, v′ = −x which can be represented as vectors and matrices. For example(
x′

v′

)
=

(
0 1
−1 0

)(
x
v

)
(
x(t)
v(t)

)
= exp

(
(t− t0)

(
0 1
−1 0

))(
x(t0)
v(t0)

)
=

(
cos(t− t0) sin(t− t0)
− sin(t− t0) cos(t− t0)

)(
x(t0)
v(t0)

)
⇒ x(t) = x(t0) cos(t− t0) + x′(t0) sin(t− t0)

This works only because A is constant!

For x′(t) = A(t)x(t), x(t0) = x0 in general, exp((t− t0)A(t)) is not a solution, nor is exp

(
t∫
t0

A(s)ds

)
Example

A(t) =

(
0 −1

t2

1 0

)
⇒ exp

(
t

(
0 −1

t2

1 0

))
= exp

((
0 −1

t
t 0

))
(

0 −1
t

t 0

)n
=


(−1)k

(
1 0
0 1

)
if n = 2k

(−1)2k+1

(
0 −1

t
t 0

)
if n = 2k + 1

exp(tA) =

∞∑
k=0

(−1)k

(2k)!

(
1 0
0 1

)
+

∞∑
k=0

(−1)k

(2k + 1)!

(
0 −1

t
t 0

)
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= cos(1)

(
1 0
0 1

)
+ sin(1)

(
0 −1

t
t 0

)
Note that

x =

(
cos(1) − sin(1)

t
t sin(1) cos(1)

)(
a
b

)
is not a solution of x′(t) = A(t)x(t) for some

(
a
b

)

x′(t) =

(
0 sin(1)

t2

sin(1) 0

)(
a
b

)

Ax(t) =

(
0 −1

t
t 0

)(
cos(1) − sin(1)

t
t sin(1) cos(1)

)(
a
b

)
=

(
− sin(1) − cos(1)

t

cos(1) − sin(1)
t

)(
a
b

)
So for x′ = Ax we have the general solution x(t) = exp ((t− t0)A)x(t0) where exp (tA) =

∞∑
n=0

tn

n!A
n. We aim to

solve this more explicitly.
Special Case:Suppose A is diagonalizable, i.e, Av1 = v1λ1, . . . , Avm = vmλm where A is an m ×m matrix, λ
is a scalar, a 1× 1 matrix, and v a m× 1 matrix. Also, v1, . . . vm are eigenvalues and λ1, . . . λm are eigenvalues.
Then AV = V Λ, where

V =


...

...
v1 . . . vm
...

...

 , Λ =

 λ1 0 0

0
. . . 0

0 0 λm


Then {v1, . . . , vm} are a basis, so V is invertible.

AV = V Λ ⇒ A = V Λv−1 ⇒ exp(tA) = V exp(tΛn)V −1

Example Take A =

(
0 1
1 0

)
which has eigenvalues λ1 = 1 for v1 =

(
1
1

)
and λ2 = −1 for v2 =

(
1
−1

)
, so

A

(
1 1
1 −1

)
=

(
1 1
1 −1

)(
1 0
0 −1

)
with V =

(
1 1
1 −1

)
and Λ =

(
1 0
0 −1

)
A = V Λv−1 and v−1 = 1

2

(
1 1
1 −1

)
so exp(tA) = V exp(tΛ)V −1

=

(
1 1
1 −1

)
exp

((
t 0
0 −t

))
1

2

(
1 1
1 −1

)

=

(
et+e−t

2
et−e−t

2
et−e−t

2
et+e−t

)
=

(
cosh t sinh t
sinh t cosh t

)
So,

x′ =

(
0 1
1 0

)
x ⇒ x(t) =

(
cosh t sinh t
sinh t cosh t

)
x0

What if A is not diagonalizable?

THEOREM 3.3 (Jordan Decomposition). If A is a complex square matrix then A = V JV −1 where J = D+N
for matrices D,N and:

• D is diagonal
• N is nilpotent (some power of it is zero)
• DN = ND

So D and N are of the form:

D =

 λ1 0 0

0
. . . 0

0 0 λm

 , N =


0 1 0 . . .
0 0 1 . . .

0 . . .
. . .

...

 for say the first 3 eigenvalues equal

Then exp(tA) = V exp(tJ)V −1 = V exp(tD + tN)V −1 = V exp(tD) exp(tN)V −1.



3. LINEAR SYSTEMS 15

Example Consider y′′ − 3y′ + 2y = 0. We can use reduction of order as before, giving

d

dt

 y
y′

y′′

 =

 0 1 0
0 0 1
−2 3 0

 y
y′

y′′


where the eigenvalues are the roots of the characteristic polynomial, det(λI − A) = λ3 − 3λ + 2 = 0 = (λ +
2)(λ− 1)2, so the eigenvalues are λ = −2, 1, 1 and the eigenvectors can then be found

A

 1
−2
4

 =

 1
−2
4

 (−2) , A

 1
1
1

 =

 1
1
1

 (1) , A

 −1
0
1

 =

 −1
0
1

 (1) +

 1
1
1


so then, we have

A

 1 1 −1
−2 1 0
4 1 1

 =

 1 1 −1
−2 1 0
4 1 1

 −2 0 0
0 1 1
0 0 1


where V =

 1 1 −1
−2 1 0
4 1 1

 and J =

 −2 0 0
0 1 1
0 0 1

 and J can be decomposed into D and N , where

D =

 −2 0 0
0 1 0
0 0 1

 , N =

 0 0 0
0 0 1
0 0 0

 which implies

exp(tD) =

 e−2t 0 0
0 et 0
0 0 et

 , exp(tN) =

 1 0 0
0 1 t
0 0 1

⇒ exp(tJ) =

 e−2t 0 0
0 et tet

0 0 et


exp(tA) = V

 e−2t 0 0
0 et tet

0 0 et

V −1 so x(t) = exp(tA)x(0)

 y(t)
y′(t)
y′′(t)

 = exp(tA)

 y(0)
y′(0)
y′′(0)

 = V

 e−2t 0 0
0 et tet

0 0 et

V −1

 y(0)
y′(0)
y′′(0)


and V −1

 y(0)
y′(0)
y′′(0)

 is constant so we can solve explicitly to get

y(t) = c1e
−2t + c2e

t + c3te
t and the coefficients can be determined from the initial condition and differentiating

this general solution.
• y(0)c1 + c2
• y′(0) = −2c1 + c2c+ c3
• y′′(0) = 4c1 + c2 + x(m−1)(0)c4

and then solve for the coefficients.

3.2. Linear Constant Coefficient Homogeneous Equations, Scalar. Consider the equation

cmx
(m) + cm−1x

(m−1) + . . .+ c0x = 0

We can carry out reduction of order as before to give us the following system:

d

dt


x
x1

...
x(m−1)

x(m−1)(0)

 =



0 1 0 . . . 0
... 0 1 0 . . .

0 . . .
. . .

1
−c0
cm

. . . −cm−1

cm




x
x1

...
x(m−1)

 i.e
dx

dt
= Ax

We now need the characteristic polynomial of this system, f(λ):

P (λ) = det(λI −A) = det



λ −1 0 . . . 0
... λ −1 0 . . .

0 . . .
. . .
λ −1

c0
cm

. . . λ+ cm−1

cm
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=
cm−1

cm
λm−1 + . . .+

c0
cm

λ0 =
cm−1λ

m−1 + . . .+ c1λ+ c0
cm

and A = V JV −1 where J = D +N as before. So the roots are λ1, . . . , λm and

D =

 λ1 0

0
. . .

0 λm

 , N =



0 1 0 . . . 0
... 0 1 0 . . .

0 . . .
. . .

. . .


with the 1’s above the diagonal (Jordan Blocks) and 0 along the diagonal. This is because we require DN = ND
and

A =



0 1 0 . . . 0
... 0 1 0 . . .

0 . . .
. . .

1
−c0
cm

. . . −cm−1

cm

 , A2 =


0 0 1 . . . 0
... 0

. . . 0 . . .
0 . . . 0 1

stuff
stuff . . .



Am−1 =


0 0 0 . . . 1

stuff . . . . . .
... . . .

. . .
. . .

. . .

 , A0 = I

and also I, A2, . . . , Am−1 are necessarily linearly independent. P (A) = 0 and P is non zero so the degree of
P ≥ m. So the minimal polynomial is equal to the characteristic polynomial. This means N has 1’s wherever it
can (along the super-diagonal). Then we have

exp(tD) =

 eλ1t 0

0
. . .

0 eλmt

 , exp(tN) =



1 t t2

2 0 . . . 0
0 1 t 0 . . . 0
0 0 1 0 . . . 0
0 . . . 1 t 0 . . . 0
0 . . . 1 0 . . .

0 . . . 1 t t2

2
t3

6

0 . . . 0 1 t t2

2
. . . 0 0 0 1


for each of the corresponding k × k blocks. Therefore,

exp(tJ) =


eλt teλt 0 . . .

0
. . .

... eλt


for each of the k × k blocks. So

x(t) =


x(t)
x1(t)

...
x(m−1)(t)

 = exp(tA)


x(0)
x1(0)

...
x(m−1)(0)

 = V


eλt teλt 0 . . .

0
. . .

... eλt

V −1


x(0)
x1(0)

...
x(m−1)(0)


So the solution is some linear combination of tjeλt where λ is a root of the characteristic polynomial and j is an
integer, where j is less than or equal to the multiplicity of P . The set of all solutions is a vector space with basis
{tjeλt}.
To solve this as an initial value problem, with, say,

• x(0) = . . .
• x′(0) = . . .

•
...
• x(m−1)(0) = . . .

we use the Method of Undetermined Coefficients:
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• x(t) = α1e
λt + α2te

λt . . .+ αm . . . in terms of each of the basis vectors.

•
...
• x(m−1)(t) = α1λ

m−1eλt + . . . and solve the system of linear equations.
Example Forced Damped Harmonic Oscillator.

(5) ax′′ + bx′ + cx = cos(Ωt)

which is an inhomogeneous equation. To solve this we use a trick. Differentiating twice we get

(6) ax′′′′ + bx′′′ + cx′′ = −Ω2 cos(Ωt)

and then (6) + Ω2(5) gives

(7) = ax′′′′ + bx′′′ + (c+ aΩ2)x′′ + bΩ2x′ + cΩ2x = 0

which is an homogeneous system. It should be noted that (5) imples (7) but the converse is not true. The
characteristic polynomial of this 4× 4 system is

P (λ) = aλ4 + bλ3 + (c+ Ω2)λ2 + bΩ2λ+ cΩ2 = (aλ2 + bλ+ c)(λ2 + Ω2)

which has roots λ = ±iΩ and λ = −b±
√

∆
2a where ∆ = b2 − 4ac. We then have 3 cases to consider:

(1) ∆ > 0, the Overdamped Harmonic Oscillator
(2) ∆ = 0, the Critically Damped Harmonic Oscillator
(3) ∆ < 0, the Underdamped Harmonic Oscillator

The last of these cases is the most interesting so we will focus on this one.
Set ω =

√
∆

2a and r = b
2a so that the roots of the polynomial are ±iΩ, r ± ω and a basis of the solutions is

{eiΩt, e−iΩt, e−rt+iωt, e−rt−iωt}. This would not be a basis if Ω = 0 or ω = 0 but we exclude these cases as
then system would then be critically damped and homogeneous, respectively. The only other time when this
will not be a basis is if r = 0 and ω = Ω, which is known as resonance. The basis we have is equivalent to
{cos(Ωt), sin(Ωt), e−rt cos(ωt), e−rt sin(ωt)} so we get

x(t) = α cos(Ωt) + β sin(Ωt) + γe−rt cos(ωt) + δe−rt sin(ωt)

for constants α, β, γ, δ differentiating this we get

x′(t) = βΩ cos(Ωt)− αΩ sin(Ωt) + (δω − rγ)e−rt cos(ωt)− (γω + rδ)e−rt sin(ωt)

and similarly for x′′(t) and x′′′(t), as required. Evaluating these at 0 we then have a system of linear equations
• x(0) = α+ γ
• x′(0) = βΩ + δω − γr
• x′′(0) = . . .
• x′′′(0) = . . .

which can be solved for α, β, γ, δ in terms of x(0), x′(0), x′′(0), x′′′(0). So we have:

ax′′ + bx′ + cx = cos(Ωt)

ax′′′ + bx′′ + cx′ = Ω cos(Ωt)

which give

x′′(0) =
−b
a
x′(0)− c

a
x(0) +

1

a

x′′′(0) =
−b
a
x′′(0)− c

a
x′(0)

which give

x(t) =
(r2 + ω2 − Ω2)(cos(Ωt)− e−rt cos(ωt)− r

ω e
−rt sin(ωt)) + 2rΩ(sin(ωt)− Ω

ω e
−rt sin(ωt))

r4 + 2r2ω2 + 2r2Ω2 + ω4 − 2ω2Ω2 + Ω4

+x(o)
(
e−rt cos(ωt) +

r

ω
e−rt sin(ωt)

)
+ x′(0)

1

ω
e−rt sin(ωt)

If r = 0 and ω = Ω the denominator vanishes and so {cos(Ωt), sin(Ωt), e−rt cos(ωt), e−rt sin(ωt)} is no longer a
basis for solutions to (7). To find a basis in this case we have the characteristic polynomial (λ2 + Ω2)(λ2− 2rλ+
r2 + ω2) = (λ2 + ω2) with resonance. Then, the basis should be

{eiΩt, teiΩt, e−iΩt, x(m−1)(0)te−iΩt} = {cos(Ωt), sin(Ωt), t cos(Ωt), t sin(Ωt)}
Then, similarly to above we can find a general solution and solve for the constant coefficients in terms of
x(0), x′(0), x′′(0), x′′′(0) and write x′′(0), x′′′(0) in terms of x′(0), x(0).

This method is known as the method of undetermined coefficients, which works for:
• Linear constant coefficient homogeneous scalar equations.
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• Some linear constant coefficient inhomogeneous scalar equations. It works for those whose RHS
satisfy a linear constant coefficient homogeneous equation.

This means, for polynomials p and q we have

p

(
d

dt

)
x = f where q

(
d

dt

)
f = 0

then

(8) q

(
d

dt

)
p

(
d

dt

)
x = 0

which is the characteristic polynomial. In the previous example, p(λ) = λ2 − 2rλ + r2 + ω2 and q(λ) = λ2 + Ω2

and (
d

dt2
+ Ω2

)
cos(Ωt) = 0

A basis for (8) is of the form tjeλt where λ is a root of pq and j <multiplicity of pq

3.2.1. Solutions using Fundamental Matrices. What about a more general function f?
i.e, not ones satisfying q

(
d
dt

)
f = 0 for any q

By reduction of order, we can write it as a first order system x′(t) = Ax(t) + b(t)
More generally, we can consider

x′(t) = A(t)x(t) + b(t)

possibly after reduction of order. We then need the following definition.

DEFINITION 3.4. W (s, t) is said to be a fundamental matrix if
• ∂

∂tW (s, t) = A(t)W (t)
• W (t, t) = I

Example If A is constant, W (s, t) = exp((s− t)A).
For general A, there is a unique fundamental matrix. Take W (s, t)W (s, t)−1 = I. Then, differentiating gives:

∂

∂t
W (s, t)W (s, t)−1 +W (s, t)

∂

∂t

(
W (s, t)−1

)
= 0

and on multiplying by W (s, t)−1 we get

W (s, t)−1 ∂

∂t
W (s, t)W (s, t)−1 +

∂

∂t

(
W (s, t)−1

)
= 0

⇒ ∂

∂t

(
W−1

)
= −W−1

(
∂

∂t
W

)
W−1 = −W (s, t)−1A(t)W (s, t)W (s, t)−1 = −W (s, t)−1A(t)

we then have the following claim.
Claim: W (s, t)W (r, s) = W (r, t)

PROOF. W (r, t)−1W (s, t)W (r, s) = I if s = t. Then, differentiating,

∂

∂t

(
W (r, t)−1W (s, t)W (r, s)

)
=

(
∂

∂t
W (r, t)−1

)
W (s, t)W (r, s) +W (r, t)−1

(
∂

∂t
W (s, t)

)
W (r, s)

= −W (r, t)A(t)W (s, t)W (r, s) +W (r, t)−1A(t)W (s, t)W (r, s) = 0

so we have W (r, t)−1W (s, t)W (r, s) = I for all t so W (s, t)W (r, s) = W (r, t). �

Suppose x′(t) = A(t)x(t) + b(t). Then, define

y(t) = W (t0, t)
−1x(t)

so we have
y′(t) = −W (t0, t)

−1A(t)x(t) +W (t0, t)
−1x′(t)

= W (t0, t)
−1 (x′(t)−A(t)x(t)) = W (t0, t)

−1b(t)

then we can get

y(t) = y(t0) +

t∫
t0

W (t0, s)
−1b(s)ds

and x(t) = W (t0, t)y(t)

= W (t0, t)y(t0) +W (t0, t)

t∫
t0

W (t0, s)
−1b(s)ds = W (t0, t)x(t0) +

t∫
t0

W (s, t)b(s)ds
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Conversely, if we have

x(t) = W (t0, t)x0 +

t∫
t0

W (s, t)b(s)ds

then x′(t) = A(t)x(t) + b(t) and x(t0) = x0 so

x′(t) = A(t)W (t0, t)x0 +W (t, t)b(t) +

t∫
t0

A(t)W (s, t)b(s)ds

= A(t)

W (t0, t)x0 +

t∫
t0

W (s, t)b(s)ds

+ Ib(t) = A(t)x(t) + b(t)

How do we find W? d
dtV (t) = A(t)V (t) if and only if the columns of V satisfy d

dtv(t) = A(t)v(t).
If V is invertible then W (s, t) = V (t)V (s)−1 works and ∂

∂tW (s, t) = A(t)V (t)V (s)−1 = A(t)W (s, t) and W (t, t) =

V (t)V (t)−1 = I. Then x′(t) = A(t)x(t) + b(t), x(t0) = x0 gives x(t) = W (t0, t)x0 +
t∫
t0

W (s, t)b(s)ds and

W (s, t) = V (t)V (s)−1 so the columns of V are linearly independent solutions of v′(t) = A(t)v(t).

Example Consider (1−t2)x′′(t)−2tx′(t) = f(t). Let y(t) = x′(t) so y′(t) = 2t
1−t2 y(t)+ f(t)

1−t2 which can be written
in matrix form, giving (

x′

y′

)
=

(
0 1
0 2t

1−t2

)(
x
y

)
+

(
0
f(t)
1−t2

)
which has solution (

x(t)
y(t)

)
= W (0, t)

(
x(0)
y(0)

)
+

t∫
0

W (s, t)

(
f(s)
1−s2

)
ds

to find W , solve (
x′

y′

)
=

(
0 1
0 2t

1−t2

)(
x
y

)
giving x′(t) = y(t) and y′(t) = 2t

1−t2 y(t) so then solving for x(t), y(t)

y(t) = y(0) exp

 t∫
0

2s

1− s2

 ds = y(0) exp
(
− log(1− t2)

)
=

y(0)

1− t2

x(t) = x(0) +

t∫
0

x′(s)ds = x(0) +

t∫
0

y(s)ds = x(0) +

t∫
0

y(0)

1− s2
ds

= x(0) + y(o)

t∫
0

1

2

(
1

1− s
+

1

1 + s

)
ds = x(0) +

y(0)

2
log

(
1 + t

1− t

)
and we know y(t) = y(0)

2 from before which gives solutions(
x(t)
y(t)

)
=

(
1
0

)
,

(
1
2 log

(
1+t
1−t

)
1

1−t2

)
so

V (t) =

(
1 1

2 log
(

1+t
1−t

)
0 t

1−t2

)

V (s)−1 =

(
1 − 1

2 (1 + s2) log
(

1+s
1−s

)
0 1 + s2

)
and W (s, t) = V (t)V (s)−1 which gives

W (s, t) =

(
1 1

2 (1 + s2) log
(

1+t
1−t

)
− 1

2 (1 + t2) log
(

1+s
1−s

)
0 1+s2

1−t2

)
so for the original equation (1− t2)x′′(t)− 2tx′(t) = f(t) the solution is

x(t) = x(0) + y(0)
1

2

(
(1− s2) log

(
1 + t

1− t

)
− (1− t2) log

(
1 + s

1− s

))
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+
1

2

t∫
0

(
(1− s2) log

(
1 + t

1− t

)
− (1− t2) log

(
1 + s

1− s

))
f(s)

1− s2
ds

We have ∂W
∂t = A(t)W (t) which can also be written as

W ′i,k =

n∑
j=1

ai,j(t)Wj,k(t)

and the rows of W satisfy

r′i =

k∑
j=1

ai,j(t)rj(t)

W (s, t) =

 − r1 −

−
... −

− rn −


and the determinant is linear in each row.

det(W (s, t))′ = det

 − r′1 −

−
... −

− rn −

+ . . .+ det

 − r1 −

−
... −

− r′n −


and also

det



− r1 −

−
... −

− r′i −

−
... −

− rn −

 =



− r1 −

−
... −

−
∑
j

aijrj −

−
... −

− rn −


=

n∑
j=1

aijdet



− r1 −

−
... −

− rj −

−
... −

− rn −


with the rj in the ith row. We then have to consider two cases. If i = j the the value is ai,j det(W (s, t)), 0
otherwise. So

det(W (s, t))′ =

n∑
i=1

ai,i(t) det(W (s, t)) = tr(A(t)) det(W (s, t))

so det(W (s, t)) satisfies a first order scalar equation.

det(W (s, t)) = det(W (s, s)) exp

 t∫
s

tr(A(r))

 dr = exp

 t∫
s

tr(A(r))dr


Example Consider A =

(
0 1
0 2t

1−t2

)
then we get

det(W (s, t)) = exp

 t∫
s

2r

1− r2
dr

 = exp

(
log

(
1− s2

1− t2

))
=

1− s2

1− t2

then

det(W (s, t)) = exp

 t∫
s

2r

1− r2
dr

 = exp

(
log

(
1− s2

1− t2

))
=

1− s2

1− t2

and also det(W (s, t)) =

∣∣∣∣ 1 stuff

0 1−s2
1−t2

∣∣∣∣ = 1−s2
1−t2 as it should be.

Then d
dt det(W (s, t)) = tr(A(t)) det(W (s, t)) which implies det(W (s, t)) = exp

(
t∫
s

tr(A(r))dr

)
i.e ∂W

∂t = AW . If

V satisfies V ′ = AV then det(V )′ = tr(A) det(V ) and det(V (t)) = det(V (S)) exp

(
t∫
s

tr(A(r))dr

)
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3.3. Higher Order Scalar Equations. We can then consider higher order scalar equations of the form

cn(t)x(n)(t) + . . .+ c1(t)x′(t) + c0(t)x(t) = 0

which can be re-arranged using reduction of order to give

d

dt

 x(t)
x′(t)

...x(n−1)(t)

 =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
0 . . .
−c1
cn

. . . −cn−1

cn


 x(t)

x′(t)
...x(n−1)(t)


calling the matrix A(t).
So then we have v′(t) = A(t)v(t) and tr(A(t)) = −cn−1(t)

cn(t) so

det(W (s, t)) = exp

− t∫
s

cn−1(r)

cn(r)
dr


so it only depends on the first two coefficients.

3.3.1. Second Order Scalar. Focus on equations of the form

c2(t)x′′(t) + c1(t)x′(t) + c0(t)x(t)

then we get

V (t) =

(
x1(t) x2(t)
x′1(t) x′2(t)

)
so det(V (t)) = x1(t)x′2(t)− x2(t)x′1(t) and

det(V (t)) = x1(t)x′2(t)− x2(t)x′1(t) = det(V (s)) exp

 t∫
s

tr(A(r))dr

 = det(V (s)) exp

− t∫
s

c1(r)

cn(r)
dr


which is a first order linear inhomogeneous scalar equation for x2 if x1 is given.
Example Take (1− t2)x′′ − 2tx′ = 0. Then x1(t) = 1 is a solution and

x1(t)x′2(t)− x′1(t)x2(t) = c exp

 t∫
s

2r

1− r2
dr

 = c exp
(
− log(1− r2)

)∣∣r=t
r=s

= c
1− s2

1− t2

Then we can choose s = 0 and c = 1 so x′2(t) = 1
1−t2 which means

x2(t) = x2(s) +

t∫
s

1

1− r2
dr

we chose s = 0 so x2(s) = 0 giving

x2(t) =
1

2
log

(
1 + t

1− t

)
Example

(1− t2)x′′(t)− 2tx′(t) + 6x(t) = 0

A particular solution is x1(t) = 3t2 − 1 so x′1(t) = 6t, x′′1(t) = 6 which gives (1 − t2)6 − 2t(6t) + 6(3t2 − 1) = 0
and we can get

x1(t)x′2(t)− x′1(t)x2(t) = c
1

1− t2
so det(V (t)) only depends on the first two coefficients. We can choose c = 1 (any non zero choice will work)
and s = 0 so x2(s) = 0 (almost any choice of s will work (zeroes of the particular solution)). Then we get

x′2(t) =
6t

3t2 − 1
x2(t) +

1

1− t2
1

3t2 − 1

so

x2(t) =

t∫
0

exp

 t∫
s

6r

3r2 − 1
dr

 1

1− s2

1

3s2 − 1
ds
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then exp

(
t∫
s

6r
3r2−1dr

)
− exp

(
log
(

3t2−1
3s2−1

))
= 3t2−1

3s2−1 so

x2(t) =

t∫
0

3t2 − 1

(3s2 − 1)2

1

1− s2
ds = (3t2 − 1)

t∫
0

ds

(1− s2)(1− 3s2)2

We can solve
t∫

0

ds
(1−s2)(1−3s2)2 using partial fractions:

1

(1− s2)(1− 3s2)2
=

1

4

1

1− s2
+

3

4

1 + 3s2

(1− 3s2)2
=

1

8

d

ds
log

(
1 + s

1− s

)
+

3

4

d

ds

(
s

1− 3s2

)
so

t∫
0

ds
(1−s2)(1−3s2)2 = 1

8 log
(

1+t
1−t

)
+ 3

4

(
t

1−3t2

)
giving

x2(t) =
3t2 − 1

8
log

(
1 + t

1− t

)
− 3

4
t

This method is known as Wronskian Reduction of Order

3.4. Method of Successive Approximations-Picard Iterations. Suppose we have x′(t) = ax(t) and
x(t0) = ξ. Then by the fundamental theorem of Calculus we have

x(t) = x(t0) +

t∫
t0

x′(s)ds = ξ +

t∫
t0

Ax(s)ds

Picard iterations are similar to Newton’s method for approximating roots and take the following form
• Take an initial guess x−1(t)

• Refine this initial guess using xn(t) = ξ +
t∫
t0

Axn−1(s)ds

Questions:
(1) How to choose x−1?
(2) Does the sequence xn(t) converge?
(3) Does x(t) = lim

n→∞
xn(t) satisfy x′(t) = Ax(t), x(t0) = ξ?

Answers:
(1) It doesn’t matter, so may as well take x−1(t) = 0
(2) Yes
(3) Yes

So we have x−1(t) = 0 and using the iteration gives x−1(t) = 0 so

x0(t) = ξ +

t∫
t0

Ax−1(s)ds = ξ

x1(t) = ξ +

t∫
t0

Ax0(s)ds = ξ +

t∫
t0

Aξds = ξ + (t− t0)Aξ = (I + (t− t0)Aξ)

x2(t) = ξ +

t∫
t0

Ax1(s)ds = ξ +

t∫
t0

A(ξ + (s− t0)Aξ)ds

= ξ + (t− t0)Aξ +

t∫
t0

(s− t0)A2ξds = ξ + (t− t0)Aξ +A2ξ

t∫
t0

(s− t0)ds

= ξ + (t− t0)Aξ +
(t− t0)2

2
A2ξ =

(
I + (t− t0)A+

(t− t0)2

2
A2

)
ξ

In general, we have

xN (t) =

N∑
n=0

(t− t0)n

n!
Anξ

and also, lim
N→∞

xN (t) = exp((t− t0)A)ξ satisfies the Initial Value Problem.

Does this work for non-constant A?
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Assume A is continuous. Then, define x−1(t) = 0 and xn(t) = ξ+
t∫
t0

A(s)xn−1(s)ds, which is defined recursively.

Also, define
∆xn(t) = xn(t)− xn−1(t)

so that

∆xn(t) =

t∫
t0

A(s)∆xn−1(s)ds for n > 0

so then ∆x0(t) = ξ and

∆x1(t) =

t∫
t0

A(s)∆x0(s)ds =

t∫
t0

A(s)ξds

∆x(t) =

t∫
t0

A(s)∆x1(s)ds =

t∫
t0

A(s)

r∫
t0

A(r)ξdrds

so in general,

∆xn(t) =

t∫
t0

A(tn)

tn∫
t0

A(tn−1) . . .

t1∫
t0

A(t1)ξdt1 . . . dtn

=

∫
t0≤t1≤...≤tn≤t

. . .

∫
A(tn) . . . A(t1)ξdt1 . . . dtn

3.4.1. Estimates (Inequalities). Set

m = max
α≤t≤β

||A(t)| | α ≤ t0 ≤ β

then we get

||∆xn(t)| | ≤ |t− t0|
n

n!
Mn||ξ|| for α ≤ t ≤ β

PROOF. By induction on t ≥ t0. For n = 0 let ∆xn(t) = ξ, and for n ≥ 0,

||∆xn(t)| | =

∣∣∣∣∣∣|
t∫

t0

A(s)∆xn−1(s)ds

∣∣∣∣∣∣ | ≤
t∫

t0

||A(s)∆xn−1(s)| |ds

≤
t∫

t0

||A(s)| | ||∆xn−1(s)| |ds ≤
t∫

t0

M
(s− t0)n−1

(n− 1)!
Mn−1 ||ξ| |ds

=
Mn

n!
(t− t0)n ||ξ| |

�

Also, xn(t) =
n∑
j=0

∆xj(t) so then
∞∑
n=0

|t−t0|n
n! Mn ||ξ| | exists, and is equal to exp (|t− t0|M) ||ξ||. Then by the

comparison test,
∞∑
n=0

∆xn(t) exists and ||x(t)| | ≤ exp (|t− t0|M) ||ξ|| and

xn(t) = ξ +

t∫
t0

A(s)xn−1(s)ds

also,

x(t) = ξ +

t∫
t0

A(s)x(s)ds

x′(t) = A(t)x(t)

We can use this to solve for the fundamental matrix ∂
∂tW (t0, t) = A(t)W (t0, t), W (t, t) = 1. Set W−1(t) = 0

then Wn(t) = I +
t∫
t0

A(s)Wn−1(t0, s)ds which converges to a solution to the initial value problem.



24 CONTENTS

4. Existence and Uniqueness

THEOREM 4.1 (Local Existence and Uniqueness for linear inhomogeneous ODE’s). If A : [α, β] → Rm×m
and b : [α, β]→ Rm are continuous and t0 ∈ [α, β], ξ ∈ Rm then there is a unique solution x : [α, β]→ Rm to the
Initial Value Problem x(t0) = ξ, x′(t) = A(t)x(t) + b(t).

PROOF. Construct W by Picard. x(t) = W (t0, t)ξ ×
t∫
t0

W (s, t)b(s)ds works. �

THEOREM 4.2 (Global Existence and Uniqueness). Same statement as local theorem, except with R in
place of [α, β].

PROOF. R = ∪L>0[t0 − L, t0 + L] and apply the local theorem to [t0 − L, t0 + L]. �

What about non-linear examples?

x′(t) = F (t, x(t)) , x(t0) = ξ

If F : S → Rm is continuous, for

S = {(t, x) ∈ R× Rm : |t− t0| ≤ δ, ||x− ξ|| ≤ r} for δ, r > 0

(We will need more conditions later). Then

xn(t) = ξ +

t∫
t0

F (s, xn−1(s)) ds, n > 0

|t− t0| ≤ δ and x(t0) = ξ so then

x1(t) = ξ +

t∫
t0

F (s, ξ)ds, x2(t) = ξ +

t∫
t0

F (s, x(s))ds

Also, ∆xn(t) = xn(t)− xn−1(t) for n > 0 and xn(t) = ξ +
n∑
j=1

∆xj(t),

∆xn(t) =

t∫
t0

(F (s, xn−1(s))− F (s, xn−2(s)))

Problem: If F is non-linear in x, how is F (s, xn−1(s))− F (s, xn−2(s)) related to xn−1(s)− xn−2(s)?
Consider y, z : [t0−δ, t0+δ]→ Rm such that ||y(t)−ξ|| ≤ r, ||z(t)−ξ|| ≤ r. We then estimate F (t, y(t))−F (t, z(t)).
The trick is to introduce U(t, τ) = τy(t) + (1− τ)z(t) so that U(t, 1) = y(t), U(t, 0) = z(t) then

F (t, U(t, 1))− F (t, U(t, 0)) =

1∫
0

∂

∂t
F (t, U(t, τ)) dτ

∂F

∂τ
=
∂F

∂x

∂U

∂τ
=
∂F

∂x
(t, U(t, τ)) (y(t)− z(t))

so the matrix equation is
∂Fj
∂t

(t, U(t, τ)) =
m∑
k=1

∂Fj
∂xk

(t, U(t, τ)) (y(t)k − z(t)k)

This needs that ∂Fj∂xk
(t, x) continuous for (t, x) ∈ S. Then

F (t, y(t))− F (t, z(t)) =

1∫
0

∂F

∂x
(t, U(t, τ)) (y(t)− z(t)) dτ

Set

M = max
s

∣∣∣∣∂F∂x
∣∣∣∣

then

|F (t, y(t))− F (t, z(t))| ≤
1∫

0

∣∣∣∣|∂F∂x (t, U)

∣∣∣∣ | ||y(t)− z(t)| |dτ ≤M ||y(t)− z(t)| |

∆xn(t) =

t∫
t0

(F (s, xn−1(s))− F (s, xn−2(s))) ds,
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so

||∆xn(t)| | ≤
t∫

t0

M ||xn−1(s)− xn−2(s)| |ds = M

t∫
t0

We then aim to show by induction that

||∆xn(t)| | ≤ NMn−1

n!
|t− t0|n, n > 0, N = max

S
||F ||

x0(t) = ξ and x1(t) = ξ +
t∫
t0

F (s, ξ)dξ where the integral is equal to ∆x1(t). ||∆x1(t)| | ≤ |t− t0|N so

||∆xn(t)| | ≤
t∫

t0

M ||∆xn−1(s)| |ds ≤
t∫

t0

M
M−2N

(n− 1)!
|s− t0|n−1ds =

Mn−1N

n!
|t− t0|n

||xn(t)− ξ| | ≤
n∑
j=1

||∆xj(t)| | ≤
n∑
j=1

M j−1N

j!
|t− t0|j ≤

∞∑
j=1

Mn−1N

n!
|t− t0|n

so we have

||xn(t)− ξ| | ≤ N

M
(exp(|t− t0|M)− 1) ≤ r if |t− t0| ≤

1

M
log

(
1 +

Mr

N

)
then define δ̃ = min

(
δ, 1
M log

(
1 + Mr

N

))
so for |t− t0| ≤ δ̃

||∆xn(t)| | ≤ Mn−1N

n!
|t− t0|n and ||xn(t)− ξ| | ≤ N

M
(exp(|t− t0|M)− 1)

both of which are proved by induction.
So xn(t) converges to some x(t), i.e,

xn(t) = ξ +

t∫
t0

F (s, xn−1(s))ds, x(t) = ξ +

t∫
t0

F (s, x(s))ds

and x(t0) = ξ, x′(t) = F (t, x(t)). Picards method gives us a solution to the initial value problem in [t0, δ̃, t0 + δ̃]
which gives existence. For uniqueness,

||F (t, y(t))− F (t, z(t))| | ≤M ||y(t)− z(t)| | if ||y(t)− ξ| | ≤ r, ||z(t)− ξ| | ≤ r

Now suppose y′(t) = F (t, y(t)) and z′(t) = F (t, z(t)) so ||y(t0)− ξ| | < r, ||z(t0)− ξ| | < r and ||y(t)− ξ| | <
r, ||z(t)− ξ| | < r for t near t0, so

||F (s, y(s))− F (s, z(s))| | ≤M ||y(s)− z(s)| |

for s between t and t0.

y(t) = y(t0) +

t∫
t0

F (s, y(s))ds, z(t) = z(t0) +

t∫
t0

F (s, z(s))ds

y(t)− z(t) = y(t0)− z(t0) +

t∫
t0

[F (s, y(s))− F (s, z(s))] ds

and

||(t)− z(t)| | = ||(t0)− z(t0)| |+M

t∫
t0

||y(s)− z(s)| |ds

This estimate is valid on some interval I = [t0 − δ̃, t0 + δ̃] for δ̃ > 0. Let

C = max
t∈I

||y(t)− z(t)| |
||y(t0)− z(t0)| | || exp(|t− t0|M)| |

then
||y(t)− z(t)| | = C ||y(t0)− z(t0)| | || exp(|t− t0|M)| | for some t ∈ I

||y(s)− z(s)| | ≤ C ||y(t0)− z(t0)| | exp(|s− t0|M) ∀s ∈ I

||y(t)− z(t)| | ≤ ||y(t0)− z(t0)| |+ CM

t∫
t0

||y(t0)− z(t0)| | exp(|s− t0|M)ds
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= ||y(t0)− z(t0)| |

1 + CM

t∫
t0

exp(|s− t0|M)ds


= ||y(t0)− z(t0)| | [1 + C[exp(|t− t0|M)− 1]] = C ||y(t0)− z(t0)| | exp(|t− t0|M)− (C − 1) ||y(t0)− z(t0)| |

so (C − 1) ||y(t0)− z(t0)| | ≤ 0 so C ≤ 1. This means, ∀t,
||y(t)− z(t)| | ≤ ||y(t0)− z(t0)| | exp(|t− t0|M)

COROLLARY 4.3. Uniqueness of Solutions: Take y(t0) = z(t0) = ξ. Then ||y(t)− z(t)| | ≤ 0⇒ y(t) = z(t).

COROLLARY 4.4. Continuous dependence on initial conditions x(t) depends continuously on ξ.

So we can formulate these results more concisely.

THEOREM 4.5 (Picard Existence and Uniqueness theorem for ODE’s). If F, ∂F∂x continuous on S then there
is a unique solution to

x′(t) = F (t, x(t)), x(t0) = ξ

for |t− t0| ≤ δ̃ depending continuously on ξ.

4.1. More Existence and Uniqueness Theorems.

THEOREM 4.6 (Theorem 0). If F continuous and ∂Fj
∂xk

is continuous near (t0, x0) ∈ R × Rm then the IVP
x′(t) = F (t, x(t)), x(t0) = x0 has a unique solution near t0 and depends continuously on x0 (and t0).

4.1.1. Improvements.

THEOREM 4.7 (Theorem 1). If G : U ⊆ R × Rm × Rm → Rm is continuous in some neighbourhood U

of (t0, x0, v0) and ∂Gj
∂xk

,
∂Gj
∂vk

also continuous and ∂Gj
∂vk

is invertible the the IVP G(t, x(t), x′(t)) = 0, x(t0) =

x0, x
′(t0) = v0 has a unique solution near t0 if G(t0, x0, v0) = 0.

PROOF. Theorem 0 and the Implicit Function Theorem. �

Example x′(t)3 − x(t)2 = 0 in R. Then G(t, x, v) = v3 − x2 and G, ∂G∂x = −2x and ∂G
∂v = 3v2 are all continuous

and ∂G
∂v invertible if and only if v 6= 0. x′(t0) = v0 has a unique solution near t0 provided

v3
0 − x2

0 = 0 v0 6= 0

v0 = x
2
3
0 x0 6= 0

So x′(t)3 = x(t)2 gives x′(t) = x(t)
2
3 , x(t0) = x0, F (t, x) = x

2
3 so it has a unique solution near t0 if x0 6= 0. This

is the example we did in week 2 with dy
dx = y

2
3 which was separable.

THEOREM 4.8 (Theorem 2). If F is continuous near (t0, x0, ω) in R× Rm × Rm along with ∂Fj
∂xk

then there is
a unique solution to x′(t) = F (t, x(t)ω), x(t0) = x0 which depends continuously on t0, x0, ω.

Example x′′ + kx = 0, x′ = v so v′ = −kx with x(0) = 0, v(0) = 1. An explicit solution is

x(t) =


sin(
√
kt)√
k

k > 0

k k = 0
sin(
√
−kt)√
−k k < 0

and continuity at k = 0 can be shown by L’Hopital.

PROOF OF THEOREM 2. Promote parameters to dependent variables, giving:

xm+1(t0) = ω1, . . . , xm+n(t0) = ωn

x′m+1(t) = 0, . . . , x′m+n(t) = 0

and then apply Theorem 0 to the extended IVP. �

THEOREM 4.9 (Theorem 3). If (t0, x0) ∈ U ⊆ R × Rm and F : U → Rm is continuous along with ∂Fj
∂xk

in U , then there is a unique maximally extended solution to x′(t) = F (t, x(t)), dx
dt = 0, x(t0) = x0 for some

a, b, a < t0 < b and x(t) = x0 for a < t < b is a solution. For A < a < t0 < b < B, define x̃(t) = x0 for A < t < B.
Then x(t) = x0 for t ∈ R is a maximally extended solution.

THEOREM 4.10 (Theorem 4). There is a maximally extended solution to x′(t) = F (t, x(t)), x(t0) = x0.

PROOF. Pretty much just an exercise in logic. Extend until you can’t extend any more. Roughly, we can
extend until:

• We leave U .
• The solution goes to∞. For example, x′(t) = 1 +x(t)2 has solution x(t) = tan(t− s) for some s, which

goes to infinity as can be seen by graphing tan.
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• The domain of definition is R, i.e a global solution.

�

THEOREM 4.11 (Theorem 4). If (t0, x0) ∈ U, U ⊆ R × Rm open and F : U → Rm, ∂F
∂x are continuous in U

then there is a solution to the IVP such that for any closed bounded set K with (t0, x0) ∈ K ⊆ U the graph of x
intersects the boundary of K.

Example Jacobi
x′(t) = y(t)z(t)

y′(t) = −x(t)z(t)

z′(t) = −k2x(t)y(t)

for k 6= 0. Note this can solved explicitly for k = 0 as it is a linear constant coefficient equation.
x2 + y2 and k2x2 + z2 are invariants. Also

x(t)2 + y(t)2 + z(t)2 ≤ x(t)2 + y(t)2 + k2x(t)2 + z(t)2 = x(s)2 + y(s)2 + k2x(s)2 + z(s)2

for some s. Then this is
≤ x(s)2 + y(s)2 + z(s)2 + k2x(s)2 + k2y(s)2 + k2z(s)2

⇒ x(t)2 + y(t)2 + z(t)2 ≤ (1 + k2)(x(s)2 + y(s)2 + z(s)2)

or equivalently,

||x(t), y(t), z(t)|| ≤ (1 + k2)
1
2 ||x(s), y(s), z(s)||

For x0, y0, z0, t0 given, choose R > (1 + k2)
1
2 ||x0, y0, z0||. Define

κ = {(t, x, y, z) ∈ R4 : a ≤ t ≤ b and ||x, y, z|| < R}

for a ≤ t0 ≤ b, which has the following diagram: which must leave through the sides of the rectangle. We can
do this for any a, b so there is a global solution to the IVP.

We can combine the ideas from Theorem 1,2,3 into a huge theorem, but there is no point.
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5. Autonomous Systems

DEFINITION 5.1. An autonomous system is a differential equation of the form

x′ = F (x)

(no t dependence).

DEFINITION 5.2. Time translation invariance means if x(t) is a solution then so is x(t− s) for any s.

Example Linear constant coefficient.
x′ = Ax

Example Jacobi System.
x′ = yz y′ = −xz z′ = −k2xy

Example Van Der Pol.
x′′ + µ(x2 − 1)x′ + x = 0

so x′ = v and v′ = µ(1− x2)v − x.
Example Predator-Prey.

N ′ = rN(1− N

k
)− aNP

P ′ = −cP + bNP

where a, b, c, k, r are positive parameters, P is the number of predators and N is the number of prey.
Example Lorenz System.

x′ = σ(y − x) y′ = rx− y − xz z′ = xy − bz
for σ, r, b positive parameters. First studied example of a chaotic system.
Example Damped Pendulum.

θ′′ + k sin(θ) + λ(θ′)θ′ = 0

where k ≥ 0 a constant and λ ≥ 0 a function.

5.1. Equilibrium.

DEFINITION 5.3. ψ is an equilibrium of

(9) x′(t) = F (x(t))

if F (ψ) = 0 or equivalently, if x(t) = ψ is a solution.

Example Pendulum, undamped.
θ′′ + k sin θ = 0 k > 0

So θ′ = ω, ω′ = −k sin θ or equivalently,

F

((
θ
ω

))
=

(
ω

−k sin θ

)
Equilibria occur where ω = 0 i.e where k sin θ = 0, so where θ = nπ for some integer n. There are only really 2
cases, where n is even (hanging straight down) and odd(straight up).

DEFINITION 5.4. ψ is an unstable equilibrium if for all ε > 0 there is a δ > 0 such that if x′(t) = F (x(t)) x(t0) =
x0 then

||x0 − ψ|| < δ ⇒ ||x(t)− ψ|| < ε

for all t > t0. Otherwise, ψ is an unstable equilibrium.

For the pendulum, the quantity ω2 + k cos θ is invariant.

DEFINITION 5.5. ψ is a strictly stable equilibrium of (9) if it’s stable and lim
t→+∞

x(t) = ψ provided ||x0−ψ|| < δ.
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FIGURE 2. Phase Portrait for Pendulum

For undamped pendulum, θ′′ + k sin θ = 0, then (θ, θ′) = (0, 0) is stable, but not strictly stable.
For damped pendulum,θ′′+k sin θ+λ(θ′)θ′ = 0, λ > 0, (0, 0) is a stable equilibrium and (π, 0) is always unstable.
Example Linear Constant Coefficient x′ = Ax. ψ is an equilibrium if and only if Aψ = 0, so if ψ ∈ N(A). If A is
invertible then 0 is the only equilibrium.
Example Jacobi

x′ = yz y′ = −xz z′ = −k2xy

(0, 0, 0) is an equilibrium, and in fact it is sufficient for any two of the functions to be 0, so any point on the
coordinate axes.
Example Van Der Pol

x′ = v v′ = µ(1− x2)v − x
(0, 0, 0) is an equilibrium, and is the only one.
Example Predator-Prey

N ′ = rN(1− N

k
)− aNP P ′ = −cP + bNP = P (−c+ bN)

Then (N,P ) = (0, 0) is an equilibrium, along with (k, 0). Similarly, letting N = −c
b gives 0 = rN(1 + c

bk − aP )

giving P =
1+ c

bk

a so (−cb ,
1+ c

bk

a ) is another solution.
Example Lorenz

x′ = σ(y − x) y′ = rx− y − xz z′ = xy − bz

So (0, 0, 0) is an equilibrium. Also, letting x = y gives z = x2

b and

rx− x− x3

b
= x3 − b(1− r)x = 0⇒ x = ±

√
b(1− r) = y ⇒ z = 1− r

5.2. Stability.
Example Jacobi

||x(t), y(t), z(t)|| ≤
√

1 + k2||x0, y0, z0||
Then choose δ = ε√

1+k2
and

||(x0, y0, z0)− (0, 0, 0)|| < δ ⇒ ||(x(t), y(t), z(t))− (0, 0, 0)|| < ε

for all t > t0, i.e (0, 0, 0) is a stable equilibrium but it is not strictly stable. For example, ||(0, δ2 , 0)− (0, 0, 0)|| < δ

but the solution to the IVP (x0, y0, z0) = (0, δ2 , 0) does not go to (0, 0, 0).

5.3. Invariants and Stability for Autonomous Systems. For the system

x′(t) = F (x(t))

I is an invariant if dIdt = 0 for all solutions. By the chain rule,

dI(x(t))

dt
=

m∑
j=1

∂I

∂xj
(x)Fj(x)

and I is invariant if and only if
m∑
j=1

∂I

∂xj
(x)Fj(x) = 0

Note:The existence of an invariant does not imply stability.
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Example
x′ = y y′ = x

The invariant is x2 + y2 = I and dI
dt = 2xx′ − 2yy′ = 2xy − 2yx = 0. (0, 0) is an equilibrium but it is not stable.(

x′

y′

)
=

(
0 1
1 0

)(
x
y

)
so (

x(t)
y(t)

)
= exp(t

(
0 1
1 0

)
) =

(
cosh t sinh t
sinh t cosh t

)(
x0

y0

)
This is stable if for all ε > 0 there is a δ > 0 such that ||(x0.y0)|| < δ ⇒ ||x(t), y(t)|| < ε, so all solutions with
initial data near (0, 0) are bounded.
When is (x(t), y(t)) bounded?

‖x(t), y(t)‖2 = (x(t), y(t))

(
x(t)
y(t)

)
= (x(t), y(t))

(
cosh t sinh t
sinh t cosh t

)(
cosh t sinh t
sinh t cosh t

)(
x0

y0

)
= (x0, y0)

(
cosh(2t) sinh(2t)
sinh(2t) cosh(2t)

)(
x0

y0

)
=

1

2
(x0, y0)

(
e2t e2t

e2t e2t

)(
x0

y0

)
+

1

2
(x0, y0)

(
e−2t e−2t

e−2t e−2t

)(
x0

y0

)
=

1

2
e2t(x0 + y0)2 +

1

2
e−2t(x0 − y0)2

which is unbounded if x0 + y0 6= 0, so (0, 0) is unstable.

THEOREM 5.6. If U ⊆ Rm is open, ψ ∈ U, F : U → Rm continuously differentiable and I : U → R also
continuously differentiable. If I has a strict local minimum at ξ then ξ is a stable equilibrium but ξ is not strictly
stable.
Note: We didn’t assume that ξ is an equilibrium.

Example • x′ = y, y′ = −x which has invariant x2 + y2 and has a strict local minimum at (0, 0) so this
is a stable equilibrium.
• Jacobi System.

x′ = yz y′ = −xz z′ = −k2xy

which has invariants x2 + y2, k2x2 + z2, (1 + k2)x2 + z2.

PROOF. ξ is strict local minimum of I and there is an R > 0 such that

0 < ||x− ξ|| < R ⇒ I(x) > I(ξ)

then choose r > 0 such that r < min(R, ε). Define

J = min
||x−ξ||=r

I(x)

then J > I(ξ). Define
K = {x ∈ U : ||x− ξ|| < R and I(x) = J}

and also define δ = minx∈K ||x− ξ||, δ > 0. If ||x0 − ξ|| < δ then I(x(t)) = I(x0) for all t > t0 so I(x(t)) < J and
||x(t)− ψ|| < ε so ξ isn’t strictly stable.
Strictly stable is stable and lim

t→∞
x(t) = ξ whenever ||x0 − ξ|| < δ. I is continuous so

lim
t→∞

I(x(t)) = I
(

lim
t→∞

x(t)
)

= I(ξ)
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if ξ is strictly stable, which only happens if I(x0) = I(ξ). The only point x0 near ξ with I(x0) = I(ξ) is x0 = ξ. �

Example
x′ = 2y y′ = 3x2 − 3

Which has equilibria at (1, 0), (−1, 0) and has invariant I = x3 + y2 − 3x so
dI

dt
=
∂I

∂x
x′ +

∂I

∂y
y′ = −(3x2 − 3)2y + (3x2 − 3)2y = 0

I is stationary where ∂I
∂x = 3x2 − 3 = 0 and where ∂I

∂y = 2y = 0 so the stationary points are (1, 0) and (−1, 0)

also. Looking at the Hessian: (
∂2I
∂x2

∂2I
∂x∂y

∂2I
∂y∂x

∂2I
∂y2

)
=

(
6x 0
0 2

)
which is positive definite at (1, 0) and indefinite at (−1, 0) so (1, 0) is a strict minimum of I, while (−1, 0) is a
saddle point. So (1, 0) is a stable equilibrium but not strictly stable, while (−1, 0) is an unstable equilibrium.

DEFINITION 5.7. With U,F as before, ξ ∈ U we say

L : U → R

is a Lyapunov function of
x′(t) = F (x(t)) at ξ

if:
• L is continuously differentiable
• L has a strict local minimum at ξ
• There is some ρ > 0 such that if

||x− ξ|| < ρ then
m∑
j=1

∂L

∂xj
(x)Fj(x) ≤ 0

L is called a strict Lyapunov function if

0 < ||x− ξ|| < ρ ⇒
m∑
j=1

∂L

∂xj
(x)Fj(x) < 0
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Note:If x is a solution to x′ = F (x) then

d

dt
F (x(t)) =

m∑
j=1

∂L

∂xj
(x(t))Fj(x(t))

and
m∑
j=1

∂L
∂xj

Fj < 0 implying L(x) is strictly increasing.

Note:If I is an invariant and has a strict local minimum at ξ then I is a Lyapunov function, but not a strict
Lyapunov function.

THEOREM 5.8. If L is a Lyapunov function for x′(t) = F (x(t)) at ξ then ξ is a stable equilibrium. If L is a
strictly Lyapunov function then ξ is strictly stable.

PROOF. Prove stability first.
As before,

||x0 − ξ|| < δ ⇒ ||x(t)− ξ|| < ε

for all t > t0. δ < minx∈K ||x− ξ||, δ > 0. If ||x0 − ξ|| < δ then L(x0) < J . If ||x(t)− ξ|| < ε, L(x(t)) > J .
Then prove strict stability.

If ||x0 − ξ|| < δ then ||x(t)− ξ|| < r for all t > t0. So
m∑
j=1

∂L
∂xj

Fj < 0. Set

z = max
ε<||x−ξ||<r

∂L

∂xj
Fj(x)

So d(L(x(t)))
dt < z < 0 and

L(x(t)) < L(x0)− (t− t0)z → −∞ as t→ +∞
as required. �

Example Damped Pendulum
θ′′ + k sin θ + λ(θ′)θ′ = 0 k > 0

(10) θ′ = ω ω′ = −k sin θ − λ(ω)ω

Which has invariant I = 1
2ω

2 − k cos θ if λ(ω) = 0. L(θ, ω) = 1
2ω

2 − k cos θ is a Lyapunov function for (10) at
(θ, ω) = (nπ, 0) if n is even.
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PROOF. The stationary points of L satisfy
∂L

∂θ
= k sin θ

∂L

∂ω
= ω

then looking at the Hessian, (
∂2L
∂θ2

∂2L
∂θ∂ω

∂2L
∂ω∂θ

∂2L
∂ω2

)
=

(
k cos θ 0

0 1

)
which is positive definite at (nπ, ω) for n even which is a strict local minimum and is indefinite for n odd, which is
a saddle point.

d

dt
L(θ(t), ω(t)) =

∂L

∂θ
θ′ +

∂L

∂ω
ω′

= k sin θω − ω(k sin θ + λ(ω)ω) = −λ(ω)ω2 ≤ 0

So then, by the theorem, (nπ, 0) is a stable equilibrium for n even.
L is not a strict Lyapunov function. Take the modified Lyapunov function

L(θ, ω) =
1

2
ω2 − k cos θ + µω sin θ

Claim: If λ > 0 then L is a strict Lyapunov function for (10) at (nπ, 0) and n odd.
∂L

∂θ
= k sin θ + µω cos θ

∂L

∂ω
= ω + µ sin θ

which is still zero at (nπ, 0). Then getting the components of the Hessian,

∂2L

∂θ2
= k cos θ − µω sin θ

∂2L

∂θ∂ω
= µ cos θ

∂2L

∂ω2
= 1(

k cos θ − µω sin θ µ cos θ
µ cos θ 1

)
which is positive definite for sufficiently small µ.

∂L

∂t
(θ(t), ω(t) =

∂L

∂θ
θ′ +

∂L

∂ω
ω′

= (k sin θ + µω cos θ)ω − (ω + µ sin θ)(k sin θ + λ(ω)ω)

= kω sin θ + µω2 cos θ − kω sin θ − λ(ω)ω2 − kµ sin2 θ − λ(ω)µω sin θ

We can rewrite this using the following substitutions:

a(θ, ω) = kµ b(θ, ω) = λ(ω)µ c(θ, ω) = λ(ω)− µ sin θ

giving ax2 + bxy + cy2 which is positive definite for small µ.

∆(θ, ω) = b2 − 4ac = λ2µ2 − 4kλµ+ 4kµ2 cos θ < 0

for small positive µ. dL
dt < 0 unless (ω, sin θ) = (0, 0). For small positive µ, L is a strict Lyapunov function for (10)

at (nπ, 0) for n even. So these are strictly stable. �

5.4. Stability of Linear Autonomous Systems. Suppose x′ = Ax, x = 0 is an equilibrium. Is it stable? Is
it strictly stable?
Method 1:
Quadratic Lyapunov functions

(xT )′ = xTAT

If L(x) = xTBx, B = BT then
d

dt
L(x(t)) =

(
xT
)′
Bx+ xTBx′ = xTATBx+ xTBAx

= xT
(
ATB +BA

)
x = −xTCx

say. So then,
ATB +BA+ C = 0

and also
d

dt
L(x(t)) ≤ 0

if C is positive semi-definite and
d

dt
L(x(t)) < 0

if C is positive definite (assuming x(t) 6= 0).
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THEOREM 5.9. 0 is a strict stable equilibrium of x′ = Ax if there are positive definite matrices B,C such that
ATB +BA+ C = 0.
0 is a stable equilibrium if there is a positive definite B and a positive semi-definite C such that

ATB +BA+ C = 0

PROOF. L(x) = xTBx is a strict Lyapunov function in first case, Lyapunov in second case. �

Method 2:Just solve x′ = Ax.
x(t) = exp (tA)x0

and then make a linear change of variable with y = V −1x

y′ = V −1x′ = V −1Ax = V −1AV y

By the assignment (5) 0 is a (strictly) stable equilibrium of x′ = Ax if and only if 0 is a (strictly) stable equilibrium
of y′ = V −1AV y.
We can always choose V so that J = V −1AV is in Jordan normal form.

J =


J1 0 . . . 0
0 J2 . . . 0
...

. . . 0
0 . . . 0 Jl

 where Jk =


λk 1 . . . 0

0 λk
. . . 0

...
. . . 1

0 . . . 0 λk


each block of size mk ×mk.

y′ = Jy ⇒ y(t) = exp(tJ)y0

exp(tJ) =

 exp(tJ1) 0 0
. . .

...
0 . . . exp(tJl)


and then

exp(tJk) =


exp(tλ1) t exp(tλk) . . . tmk−1 exp(λkt)

(mk−1)!

. . . . . .

0 . . . exp(tλk)


then we have ||y(t)|| ≤ || exp(tJ)||||y0|| so || exp(tJ)|| bounded for t ≥ 0 which implies stability. Similarly,
|| exp(tJ)|| → 0 implies strict stability. Then,

‖ exp(tJ)‖2 = tr
(

exp(tJ)t exp(tJ)
)

and

exp(tJ1)T exp(tJ) =

 exp(tJ)T exp(tJ1) 0 . . .

0
. . .

...
0 . . . exp(tJl)T exp(tJl)


and

‖ exp(tJ)‖ =

l∑
k=1

tr
(

exp(tJk)T exp(tJk)
)

=

l∑
k=1

‖ exp(tJk)‖2

=

l∑
k=1

| exp(λkt)|2
mk−1∑
j=0

(
tj

j!

)2

(mk − j)

and then
| exp(λkt)|2 = exp(λkt) exp(λkt) = exp(λkt) exp(λkt)

= exp((λk + λkt)) = exp(2Reλkt)

So then for:

| exp(λkt)|2
mk−1∑
j=0

t2j

j!
(mk − j)

If λ < 0 then this is bounded and goes to zero. If Reλk = 0 and mk = 1 then bounded, otherwise not bounded.

DEFINITION 5.10. The geometric multiplicity of an eigenvalue λ of A is
dim(N(A− λI)). The algebraic multiplicity is the order of vanishing of the characteristic polynomial of A at λ.
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We then have
1 ≤ Geometric Multiplicity ≤ Algebraic Multiplicty

and the geometric multiplicity is equal to the algebraic multiplicity if and only if there are no off diagonal 1′s in
the Jordan blocks for λ.

THEOREM 5.11. If all eigenvalues λ of A have Reλ < 0 then 0 is a strictly stable equilibrium of x′ = Ax.
If all eigenvalues λ satisfy Reλ ≤ 0 and either Reλ < 0 or algebraic multiplicity of λ is equal to geometric
multiplicity then 0 is a stable equilibrium.

PROOF. See previous calculation of ‖ exp(tJ)‖. �

Example General 2× 2 case.

u′ = αu+ βv v′ = γu+ δv

Then x′ = Ax with

x =

(
u
v

)
A =

(
α β
γ δ

)
When is 0 stable? Strictly stable?
Characteristic polynomial: λ2 − trAλ + detA, which has roots (eigenvalues) λ = r ±

√
∆, r = 1

2 trA, ∆ =

(trA)2 − 4 detA = 4(r2 − detA). We then consider 4 cases:
Case 1: ∆ > 0 so distinct real roots λ+, λ− = r ±

√
∆. Then λ+ + λ− = trA = 2r, λ+λ− = detA.

λ+, λ− <⇔ r < 0,detA > 0

λ+, λ− ≤ 0⇔ r < 0,detA ≥ 0

Case 2:∆ < 0 so has complex conjugate eigenvalues r ± i
√

∆. For both, Reλ = r.

Reλ < 0⇔ r < 0, Reλ ≤ 0⇔ r ≤ 0

Case 3: ∆ = 0 so double real root λ = r. If the geometric multiplicity is 1 then

Reλ < 0⇔ r < 0 strict stability

and Reλ ≤ 0⇔ r ≤ 0 but algebraic multiplicity is not equal to geometric multiplicity so r = 0 is not stable.
Case 4:∆ = 0 so λ = r is a double root.

Reλ < 0⇔ r < 0 strictly stable

and Reλ ≤ 0 ⇔ r ≤ 0 and geometric multiplicity equal to algebraic multiplicity so stable. Geometric multiplicity
is equal to algebraic which is equal to 2 = dim(N(A− λI))⇔ A = λI.
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THEOREM 5.12. There are positive definite B,C such that ATB +BA+C = 0 if and only if all eigenvalues
λ satisfy Reλ < 0.
There are positive definiteB positive semi-definite C such that ATB+BA+C = 0 if and only if for all eigenvalues
λ, Reλ ≤ 0 and either Reλ < 0 or the geometric multiplicity is equal to the algebraic multiplicity.

PROOF. We will only outline it and then prove the 2 × 2 case.First, we can replace A by any similar matrix
Ã = V −1AV . Suppose ÃT B̃ + B̃Ã + C̃ = 0. Set B = V −T B̃V −1 where V −1T = V −T , C = V −T C̃V −1, A =
V ÃV −1. Then

ATB +BA+ C =
(
V ÃV −1

)T (
V −T B̃V −1

)
+
(
V −T B̃V −1

)(
V ÃV −1

)
+ V −T C̃V −1

= V −T
(
ÃTB + B̃Ã+ C̃

)
V −1 = 0

If ATB +BA+ C = 0 then set B̃ = V TBV, C̃ = V TCV so ÃB̃ + B̃Ã+ C̃ = 0.
For the 2× 2 case, we consider 4 cases once again:

(1) ∆ > 0 then two real roots (eigenvalues). Jordan form of A is
(
λ1 0
0 λ2

)
. Replace A by it’s Jordan

form. If λ1, λ2 < 0 then take B = I. C =

(
−2λ1 0

0 −2λ2

)
satisfies ATB +BA+ C = 0. If λ1, λ2 ≤ 0

then can take any B,C.
(2) ∆ < 0 then has complex conjugate roots. Av = vλ and Av = vλ. Take λ = a + ib, v = x + iy with

a, b, x, y real.

Ax = A

(
v + v

2

)
=
vλ+ vλ

2
= xa− yb

Ay = A

(
v − v

2i

)
=
vλ− vλ

2i
= xb+ ya

So we have

A

 x y

 =

 x y

( a b
−b a

)
, Ã =

(
a b
−b a

)

Then Reλ = Reλ = a. If a < 0 then B = I and C =

(
−2a 0

0 −2a

)
satisfies ATB+BA+C = 0, with

B,C positive definite. If a ≤ 0 then C is positive semi-definite.

(3) ∆ = 0 gives a repeated real root so A is similar to it’s Jordan form
(
λ 0
0 λ

)
or
(
λ 1
0 λ

)
. Take

B =

(
1 0
0 µ

)
.

If A =

(
λ 1
0 λ

)
then AT =

(
λ 0
1 λ

)
so ATB =

(
λ 0
1 λµ

)
, BA =

(
λ 1
0 λµ

)
.

ATB +BA =

(
2λ 1
1 2λµ

)
so C =

(
−2λ −1
−1 −2λµ

)
If λ < 0 then B,C are positive definite if we choose µ > 0.

4λ2µ− 1 > 0 ⇒ µ >
1

4λ2

If λ ≤ 0 then there is nothing to prove.

(4) A =

(
λ 0
0 λ

)
then take B = I and C = −2A. B is positive definite and C is positive definite if λ < 0

and positive semi-definite if λ ≤ 0 for the 2× 2 case.

�

The eigenvalue problem implies the existence of a solution to ATB +BA+ C = 0.
For linear systems, (strict)stability is equivalent to the existence of a (strict) Lyapunov function, which is equiva-
lent to the eigenvalue condition.
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5.5. Linearisation. Suppose ξ is an equilibrium of x′(t) = F (x(t)), F (ξ) = 0. Then, Taylor expanding,

Fj(x) = Fj(ξ) +

m∑
k=1

∂Fj
∂xk

(xk − ξk) + remainder

Fj(ξ) = 0 as ξ is an equilibrium so set

Aj,k =
∂Fj
∂xk

(ξ) yk = (xk − ξk)

so Fj(x) =
m∑
k=1

Aj,kyk + remainder and y′(t) = x′(t) = F (x(t)) u Ay(t) and the error is small compared to ‖y‖.

We hope the stability properties of ξ as equilibria of x′ = F ◦ x are the same as those of 0 as equilibrium of
y′ = Ay.

THEOREM 5.13. If 0 is a stable equilibrium of the linearised equation then ξ is a strictly stable solution of the
non-linear equation.
Note: The converse is false and the theorem doesn’t hold if we drop the word strict.

So for y′ = Ay and y = x− ξ should approximately satisfy y′ = Ay.
Warning: If the linearised system has a stable, but not strictly stable equilibrium at 0 then we learn nothing
about ξ as an equilibrium of x′ = F ◦ x.
Example

(11) u′ = −v + α(u2 + v2)u, v′ = u+ α(u2 + v2)v

Then set w = u2 + v2 so w′ = 2uu′ + 2vv′ = 2α(u2 + v2)2 = 2αw2. This is a separable equation, namely
dw

dt
= 2αw2 ⇒ dw

w2
= 2αdt

Integrating this from w(t0) = w0 gives
1

w0
− 1

w
= 2(αt− α0t)

so
w =

1
1
w0
− 2(αt− α0t)

=
w0

1 + 2αt0w0 − 2αw0t

If α = 0 then w = w0 (invariant) is stable, but not strictly stable.
If α > 0 then lim

t→t0+ 1
αw0

w(t) =∞ and all non-equilibrium solutions blow up in finite time, so not stable.

If α < 0 then lim
t→∞

w(t) = 0 so ‖(u, v) − (0, 0)‖ → 0. w is monotone decreasing so strictly stable. (11) has the

same linearisation at (0, 0) independent of α. In this case A =

(
0 −1
1 0

)
THEOREM 5.14. With F, ξ,A as before, if ATB + BA + C = 0 with B,C positive definite then V (x) =

(x− ξ)TB(x− ξ) is a strict Lyapunov function for x′ = F ◦ x at ξ.

PROOF. It is clearly continuously differentiable with a strict local minimum at ξ. For monotonicity,

d

dt
V (x(t)) =

 n∑
j=1

∂V

∂xj
Fj

 (x(t))

and to evaluate this,
∂V

∂xj
(x) = 2

n∑
k=1

Bj,k(xk = ξk)

and

Fj(x) =

n∑
l=1

Aj,l(xl − ξl) + o(‖x− ξ‖)

using ‘little o’ notation. So then the derivative is equal to: n∑
j=1

∂V

∂xj
(x)Fj

 (x) = 2

n∑
j=1

Aj,lBj,k(xk − ξk)(xl − ξl) + o(‖x− ξ‖2)

= 2(x− ξ)T (ATB)(x− ξ) + o(‖x− ξ‖2) = (x− ξ)T (ATB +BA)(x− ξ) + o(‖x− ξ‖2)

−(x− ξ)TC(x− ξ) + o(‖x− ξ‖2) < 0

if 0 < ‖x− ξ‖ < δ. �
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THEOREM 5.15. If 0 is a strictly stable equilibrium of y′ = Ay then ξ is a strictly stable equilibrium of
x′ = F ◦ x.

Eigenvalues of A having negative real part implies the equilibrium is strictly stable.

THEOREM 5.16. If the linearisation of x′ = F ◦ x at ξ is unstable then ξ is an unstable equilibrium.

We will not prove this.
Example Jacobi System.

x′ = yz y′ = −xz z′ = −k2xy

Then we get

A =


∂x′

∂x
∂x′

∂y
∂x′

∂z
∂y′

∂x
∂y′

∂y
∂y′

∂z
∂z′

∂x
∂z′

∂y
∂z′

∂z

 =

 0 z y
−z 0 −x
−k2y −k2x 0


At (x, y, z) = (0, 0, 0), A is the zero matrix so linearisation is stable but not strictly stable so it provides no
information about the system. At the other equilibria, the same thing happens.
Example Damped pendulum.

θ′ = ω ω′ = −k sin θ − λ(ω)ω, λ ≥ 0

then

A =

(
∂θ′

∂θ
∂θ′

∂ω
∂ω′

∂θ
∂ω′

∂ω

)
=

(
0 1

−k cos θ −λ(ω)− ωλ′(ω)

)
and at (θ, ω) = (nπ, 0), this is equal to

(
0 1

(−1)n+1k −λ(0)

)
. Then, tr(A) = −λ(0) and det(A) = (−1)nk. If n

is even and λ(0) > 0 then the linearisation is strictly stable, so equilibrium is strictly stable. If n odd then there is
an eigenvalue with positive real part, so linearisation is unstable and the damped pendulum is unstable.
Example Predator Prey.

N ′ = PN(1− N

k
)− aNP P ′ = −cP + bNP

with all parameters positive. The equilibria are

(N,P ) ∈ {(0, 0), (k, 0), (
c

b
m
r

a
(1− c

bk
))}

and then

A =

(
∂N ′

∂N
∂N ′

∂P
∂P ′

∂N
∂P ′

∂P

)
=

(
r − 2rNk − ap −aN

bNP −c+ bN

)
At (0, 0), A =

(
r 0
0 −c

)
and the linearisation is unstable so (0, 0) is an unstable equilibrium. At (k, 0)A =(

−r −ak
0 −c+ bk

)
and we then have several cases. If bk < c then the linearisation is strictly stable so (k, 0) is

strictly stable. If bk > c then the linearisation is unstable so (k, 0) is unstable.
Example Lorenz System.

x′ = σ(y − x) y′ = rx− y − xz z′ = xy − bz
which has equilibria (0, 0, 0) and (±

√
b(r − 1),±

√
b(r − 1), r − 1) and once again

A =


∂x′

∂x . . .
...

. . .
∂z′

∂z

 =

 −σ σ 0
r − z −1 −x
y x −b


The method we used previously only works for the 2×2 case, but in general we can use the Routh-Hurwitz algorithm
to determine when the eigenvalues have negative real part.


