1 AMM problem 11651

Solvers: TCDmath problem group, Mathematics, Trinity College, Dublin 2, Ireland.

Show that
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holds for every nonnegative integeif and only if = (1 + 1/5)/2.
Answer. The right-hand side may be written &%n), and clearlyE(n) = n — E(|n/¢]). This

will not converge unlesg > 1. We assume from now on that> 1.
If (L.1) holds for alln, then
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On the other hand, if (11 2) holds for allthen
n+1 e In/o] +1
L%
In/el+1,  n, [=5-] +1

whence the identity (111) can be ‘unrolled.” We discard thiginal identity in favour of the equivalent
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The latter identity implies
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for all n. Dividing by n,
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for arbitrarily largen, which is only possible, sincg > 1, if ¢ is the golden sectiofl + v/5)/2.

To deal with the converse, we assume th& indeed the golden section. We resetvio denote
the other root o> — 2 — 1 =0, i.e.,1) = (1 —/5)/2 = —1/¢.
Letm = [n/¢]. We need to prove
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for every nonnegative integer. Write
" mta, so P il
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Sincen/¢ + n/¢* =n,
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Case (i):a + 1/¢ < 1, in which casen = |(n + 1)/¢], and it is enough to show that
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Sincem/¢ < n/¢?, the second inequality is obvious. The first is equivalent to
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Buta <1—1/¢=1/¢*andl —«a > 1 —1/¢* = 1/¢, so this is correct.
Case (ii):a+1/¢ > 1. Then|(n+1)/¢| = m + 1, and we need to show
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So we need to show that
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is betweerd and1. Itis positive, andv > 1—-1/¢ = 1/¢?,s0l —a < 1—¢* = 1/¢, as required. |
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