MA341D Answers and solutions to homework assignment 2

1. The Magma commands

Q := RationalField();

P<x,y,z> := PolynomialRing(Q, 3, "lex");
S:=[x*y-z"2-z,y*z-x"2-x,x*z2-y " 2+y] ;
GroebnerBasis(S);

produce the following Grobner basis:

ac2—|-:n—z2—z,

zy — 2% — 2,
T2,
2
Yy -V,
yz — 2% — z,

23 —i—22.

From the last equation, z = 0 or z = —1. If 2 = 0, the equations become z> + = = 0,
ry = 0, y*> — y = 0, leading to the solutions (0,0,0), (—1,0,0), and (0,1,0). If z = —1,
the equations become z? +x =0, 2y =0, —z = 0, 4> —y = 0, —y = 0, leading to the
solution (0,0, —1). Those four solutions together form the complete solution set.

2. The Magma commands

Q := RationalField();

P<x,y,z> := PolynomialRing(Q, 3, "lex");
S:=[x*y-z"2-2z,y*z2-x"2-x,x*z-y " 2-y] ;
GroebnerBasis(S);

produce the following Grobner basis:

xQ—i-w—yz,

xy — 2% — 2,

zz+yz+22+z,
y2+yz+y+z2+z.

This means that the elimination ideal I5 is {0}. Using the Extension Theorem, we conclude
that since there is a polynomial in our Grébner basis with the leading term 32, every z
can be extended to a solution (y, z) to the elimination ideal I = (y? + yz +y + 22 + 2).
Moreover, since the discriminant of y?4yz+4y+ 22+ as a polynomial in y is (1+2)(1—32),
for each value of z except for —1 and 1/3 we can find two distinct values of y, for z = —1 we
have y = 0, and for z = 1/3 we have y = —2/3. Furthermore, since there is a polynomial
with the leading term z2, every solution (y,z) to I; extends to a solution (z,y,z). If



3.

z # 0, the third equation shows that there is only one solution z = —(y+2z+1). If 2 = 0,
we should look at common roots of the polynomials become

:1:2—1—96,
xry,
v +y.

which are (0,0), (—1,0) and (0, —1). Altogether the solution set can be described as
{(0,0,0),(—1,0,0),(0,—1,0),(—11— z = 1,:1/,2): y2+yz+y+z2 +z= O,Z 7é 0}7

or if we note that the second and the third point are precisely the values of the third point
for z =0,
{(0,0,0),(—y — 2z —1,y,2): > +yz +y + 22 + 2 = 0}.

(a) We introduce two new variables a and b, and look for the extremal points of the
function

F(z,y,2,a,b) = (2° +y° + 2°) —a(e + y + 2) = b(z® + y° + 22 = 1/2).
Those extremal points are common zeros of 9, F = 3z —2bx —a, OyF = 3y% —2by—a,
0, F =322 —2bz—a, 0, F = —(z+y+2), pF =—(2® + 9>+ 22— 1/2).
(b) The Magma commands
Q := RationalField();
P<a, b, x, y, z> := PolynomialRing(Q, 5, "lex");
S :=[
x+y+z,
X"2+y"2+272-1/2,
3*x”"2-b*2*x-a,
3*y~2-b*2%*y-a,
3%z~ 2-b*x2*z-a
1;

GroebnerBasis(S);

produce the following Grobner basis:

a—1/2,
b—923+9/4z,
rT+y+z,

y* +yz+ 27— 1/4,
yz? —1/12y +1/22% — 1/24z,
24— 5/122% 4 1/36.

(c) Factorizing the last equation, we get (22 —1/3)(2%2—1/12) = 0. Let us consider those
two cases individually.



Suppose z? —1/12 = 0. Adding to our lit of polynomials 22 — 1/12 and recomputing
the Grobner basis, we get
a—1/2,
b+ 3/2z,
r+y+=z,
Y’ +yz —1/6,
22 —1/12

2V3°
%)(y F ﬁ), so the partial solutions (y, z) are

From the last equation, z = £-1=. Thus, we have 0 = y? + ﬁy -1/6 = (y =

1 1 1 1 1 1 1 1
NI LY AN R LAV My
and from x + y + 2z = 0 each of those extends uniquely to a solution, obtaining
1 1 1 1 1 1 1 1 1 1 1 1
N N AN LN SV AN AN AN SN LW RPN

Suppose z? —1/3 = 0. Adding to our lit of polynomials z? — 1/12 and recomputing
the Grobner basis, we get

a—1/2,
b—3/4z,
r+1/2z,
y+1/2z,
22 —1/3

From the last equation, z = +£—=. Substituting that into the previous ones, we obtain

1
V3
two more solutions

1 1 1 1 1 1

IR N RVE AN AN e

4. (a) Note that 2%~ 4252z, + .. ~+xix§72 —l—a:?il = 0 if and only if z¥ = x? and z; # x;.
Also, a:f’ =1 for all k, so effectively our polynomials have a common zero if and only
if they have a common zero where every coordinate is a k-th root of unity and those
roots at positions ¢ and j are different if and only if the vertices ¢ and j are connected
with an edge. This is precisely the regular colouring condition.

( ).

(b) Let us denote those vertices by a, b, ¢, d, e, f, g, h clockwise starting from the top one.
Then the corresponding polynomials are

-1 -1,8-1,83-1,3—1, -1, -1,h% -1,
a+ac+ 2 a®+af + f2,a% + ag + ¢°,
b2+ be+ 2,02 + be + €2, b% + bg + ¢,
b2 +bh+ k% 2 +ed+d?, P+ ch+ h2,
d®+de+ e, d>+dh+h%e® +ef + 12,
e +eg+ g% P+ fg+ g%

The Magma commands



Q := RationalField();

P<a,b,c,d,e,f,g,h> := PolynomialRing(Q, 8, "lex");
S := [

a~3-1, b°3-1, ¢*3-1, d°3-1, e°3-1, £7°3-1, g"3-1,h"3-1,
a"2+axc+c”2, a"2+axf+f72, a"2+axgtg 2,

b~ 2+b*c+c”2, b "2+bxe+e”2, b 2+b*xg+g”2, b~ 2+bxh+h"2,
c"2+c*xd+d"2, c”"2+c*h+h”2,

d"2+d*e+e”2, d"2+d*xh+h~2,

e 2+exf+f72, e 2+exgtgT2,

£ 2+fxg+g™2

1;

GroebnerBasis(S);

output the result

a—h,
b+g-+h,
c—g,
d+g+h,
e —h,
f+g+h,
>+ gh+ h?,
R —1,

which mean that there exists a regular colouring (since otherwise the reduced Grébner
basis would consist of just 1), and that if we choose a colour of the vertex h, then
the vertex g has two possible choices of colour, and colours of other vertices are
reconstructed uniquely: f is the third colour different from g and h, c is the same as
g, a and e the same as h, and both b and d the same as f. Altogether, there are 6
different colourings.



