
MA341D Answers and solutions to homework assignment 2

1. The Magma commands

Q := RationalField();

P<x,y,z> := PolynomialRing(Q, 3, "lex");

S:=[x*y-z^2-z,y*z-x^2-x,x*z-y^2+y];

GroebnerBasis(S);

produce the following Gröbner basis:

x2 + x− z2 − z,

xy − z2 − z,

xz,

y2 − y,

yz − z2 − z,

z3 + z2.

From the last equation, z = 0 or z = −1. If z = 0, the equations become x2 + x = 0,
xy = 0, y2 − y = 0, leading to the solutions (0, 0, 0), (−1, 0, 0), and (0, 1, 0). If z = −1,
the equations become x2 + x = 0, xy = 0, −x = 0, y2 − y = 0, −y = 0, leading to the
solution (0, 0,−1). Those four solutions together form the complete solution set.

2. The Magma commands

Q := RationalField();

P<x,y,z> := PolynomialRing(Q, 3, "lex");

S:=[x*y-z^2-z,y*z-x^2-x,x*z-y^2-y];

GroebnerBasis(S);

produce the following Gröbner basis:

x2 + x− yz,

xy − z2 − z,

xz + yz + z2 + z,

y2 + yz + y + z2 + z.

This means that the elimination ideal I2 is {0}. Using the Extension Theorem, we conclude
that since there is a polynomial in our Gröbner basis with the leading term y2, every z
can be extended to a solution (y, z) to the elimination ideal I1 = (y2 + yz + y + z2 + z).
Moreover, since the discriminant of y2+yz+y+z2+z as a polynomial in y is (1+z)(1−3z),
for each value of z except for −1 and 1/3 we can find two distinct values of y, for z = −1 we
have y = 0, and for z = 1/3 we have y = −2/3. Furthermore, since there is a polynomial
with the leading term x2, every solution (y, z) to I1 extends to a solution (x, y, z). If



z 6= 0, the third equation shows that there is only one solution x = −(y + z + 1). If z = 0,
we should look at common roots of the polynomials become

x2 + x,

xy,

y2 + y.

which are (0, 0), (−1, 0) and (0,−1). Altogether the solution set can be described as

{(0, 0, 0), (−1, 0, 0), (0,−1, 0), (−y − z − 1, y, z) : y2 + yz + y + z2 + z = 0, z 6= 0},

or if we note that the second and the third point are precisely the values of the third point
for z = 0,

{(0, 0, 0), (−y − z − 1, y, z) : y2 + yz + y + z2 + z = 0}.

3. (a) We introduce two new variables a and b, and look for the extremal points of the
function

F (x, y, z, a, b) = (x3 + y3 + z3)− a(x + y + z)− b(x2 + y2 + z2 − 1/2).

Those extremal points are common zeros of ∂xF = 3x2−2bx−a, ∂yF = 3y2−2by−a,
∂zF = 3z2 − 2bz − a, ∂aF = −(x + y + z), ∂bF = −(x2 + y2 + z2 − 1/2).

(b) The Magma commands

Q := RationalField();

P<a, b, x, y, z> := PolynomialRing(Q, 5, "lex");

S := [

x+y+z,

x^2+y^2+z^2-1/2,

3*x^2-b*2*x-a,

3*y^2-b*2*y-a,

3*z^2-b*2*z-a

];

GroebnerBasis(S);

produce the following Gröbner basis:

a− 1/2,

b− 9z3 + 9/4z,

x + y + z,

y2 + yz + z2 − 1/4,

yz2 − 1/12y + 1/2z3 − 1/24z,

z4 − 5/12z2 + 1/36.

(c) Factorizing the last equation, we get (z2−1/3)(z2−1/12) = 0. Let us consider those
two cases individually.



Suppose z2− 1/12 = 0. Adding to our lit of polynomials z2− 1/12 and recomputing
the Gröbner basis, we get

a− 1/2,

b + 3/2z,

x + y + z,

y2 + yz − 1/6,

z2 − 1/12

From the last equation, z = ± 1
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and from x + y + z = 0 each of those extends uniquely to a solution, obtaining
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Suppose z2 − 1/3 = 0. Adding to our lit of polynomials z2 − 1/12 and recomputing
the Gröbner basis, we get

a− 1/2,

b− 3/4z,

x + 1/2z,

y + 1/2z,

z2 − 1/3

From the last equation, z = ± 1√
3
. Substituting that into the previous ones, we obtain

two more solutions
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4. (a) Note that xk−1i +xk−2i xj + · · ·+xix
k−2
j +xk−1j = 0 if and only if xki = xkj and xi 6= xj .

Also, xki = 1 for all k, so effectively our polynomials have a common zero if and only
if they have a common zero where every coordinate is a k-th root of unity and those
roots at positions i and j are different if and only if the vertices i and j are connected
with an edge. This is precisely the regular colouring condition.

(b) Let us denote those vertices by a, b, c, d, e, f, g, h clockwise starting from the top one.
Then the corresponding polynomials are

a3 − 1, b3 − 1, c3 − 1, d3 − 1, e3 − 1, f3 − 1, g3 − 1, h3 − 1,

a2 + ac + c2, a2 + af + f2, a2 + ag + g2,

b2 + bc + c2, b2 + be + e2, b2 + bg + g2,

b2 + bh + h2, c2 + cd + d2, c2 + ch + h2,

d2 + de + e2, d2 + dh + h2, e2 + ef + f2,

e2 + eg + g2, f2 + fg + g2.

The Magma commands



Q := RationalField();

P<a,b,c,d,e,f,g,h> := PolynomialRing(Q, 8, "lex");

S := [

a^3-1, b^3-1, c^3-1, d^3-1, e^3-1, f^3-1, g^3-1,h^3-1,

a^2+a*c+c^2, a^2+a*f+f^2, a^2+a*g+g^2,

b^2+b*c+c^2, b^2+b*e+e^2, b^2+b*g+g^2, b^2+b*h+h^2,

c^2+c*d+d^2, c^2+c*h+h^2,

d^2+d*e+e^2, d^2+d*h+h^2,

e^2+e*f+f^2, e^2+e*g+g^2,

f^2+f*g+g^2

];

GroebnerBasis(S);

output the result

a− h,

b + g + h,

c− g,

d + g + h,

e− h,

f + g + h,

g2 + gh + h2,

h3 − 1,

which mean that there exists a regular colouring (since otherwise the reduced Gröbner
basis would consist of just 1), and that if we choose a colour of the vertex h, then
the vertex g has two possible choices of colour, and colours of other vertices are
reconstructed uniquely: f is the third colour different from g and h, c is the same as
g, a and e the same as h, and both b and d the same as f . Altogether, there are 6
different colourings.


