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1. Introduction

Here we present the original proof of the following theorem by Erd®s, Rényi and
Sós:

Theorem 1.1 (Friendship theorem). Suppose that, in a (�nite) group of people, any
two people have exactly one common friend. Then there is at least one "politician"
who is friends with everybody.

It is easy to see how one can interpret this in terms of graphs - let each of
the people be represented by a vertex and draw an undirected edge between two
vertices when the corresponding people are friends (assume no-one is friends with
themselves). We say two vertices are �neighbors" or �adjacent" if there is an edge
between them. The result can then be restated as follows:

Theorem 1.2 (Friendship theorem - reformulated). Let G be a graph with n ver-
tices such that any two distinct vertices have exactly one common neighbor (we will
refer to this as the �friendship condition"). Then there is at least one vertex (a
�politician vertex") which is adjacent to every other.

It is easy to construct a graph of this form - take, for example, the �windmill
graph" shown in �gure 1: In fact, we can show that any graph which satis�es our

Figure 1. Example of a windmill graph

friendship condition must have this form - and thus must have an odd number of
vertices.

Remark 1.3. The quali�ers ��nite" and �exactly one" are important here - if we allow
in�nite graphs, then starting from a �ve-cycle, we can construct a counterexample
by repeatedly add common neighbors for every pair of vertices that do not yet have
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one. This leads to a countably in�nite graph satisfying the friendship condition
with no politician.

The statement also fails if we allow more than one common neighbor - consider
the four-cycle shown in �gure 2

Figure 2. A 4-cycle

We follow Cathal Ó'Cléirigh's presentation of the proof, which is based on that
of [1].

2. Proof of the friendship theorem

2.1. Outline. Our proof is a proof by contradiction. We will assume our graph G
has no politician vertex and arrive at a contradiction by computing the �degree" of
each of its vertices:

De�nition 2.1 (Degree of a vertex). The degree of a vertex u in G is the number
of vertices adjacent to it.

We proceed as follows:

(1) We show that any two non-adjacent vertices have equal degree.
(2) We extend this to show that all vertices have equal degree k for some k ∈ N.
(3) We derive a formula for n (the number of vertices in the graph) in terms

of k, and show that k > 2.
(4) We compute eigenvalues of the adjacency matrix of G
(5) We consider the trace of the adjacency matrix and apply a theorem of

Dedekind to obtain a contradiction.

2.2. Dedekind's theorem. For our last step, we shall need the following result
from number theory, which is interesting in its own right:

Theorem 2.2 (Dedekind, 1858). Let m ∈ N. Then
√
m ∈ Q =⇒

√
m ∈ N.

Proof. Assume that
√
m ∈ Q. Let n0 be the smallest natural number with the

property that n0
√
m ∈ N.

If
√
m 6∈ N, then there exists some l ∈ N with 0 <

√
m − l < 1. Let n =

n0(
√
m− l). Then n < n0, and

n
√
m = n0

√
m− n0l ∈ N,

a contradiction. �
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Step 1 - Non adjacent vertices have equal degree. Take any two non-adjacent
vertices u, v in our graph G. Assume u has neighbors {w1, · · · , wk} (so deg u = k).
Now u and v have exactly one common neighbor; re-labeling the wi if necessary we
can assume that this is w2. Then w2 and u must have a unique common neighbor,
so w2 is adjacent to exactly one of the other wi; assume this is w1 (again, re-labeling
vertices if necessary).

Then v has common neighbor w2 with w1. It must also have a unique common
neighbor zi with each wi for i ≥ 2. If zi = zj for some i 6= j then zj would have 2
common neighbors wi and wj with u, so all the zi are distinct. Therefore v has at
least k neighbors {w2, z2, z3, · · · , zk} so hence deg v ≥ deg u(see �gure 3).

Figure 3.

Similarly, we can deduce that deg u ≥ deg v, and hence deg u = deg v = k.
Note that so far we have not made use of the absence of a politician.

Step 2 - All vertices have equal degree. Consider all neighbors w1, · · · , wk of
u from step one. Since all except w2 are non-adjacent to v, we know by step 1 that
all except w2 have degree k.

Now, since w2 is not has a politician, it has a non-neighbor x. This x must be
non-adjacent to either u or v by the friendship condition, so by step 1 we have
degw2 = deg x = k. We thus have shown that all neighbors of u have degree k,
and hence k.

Step 3 - Finding a formula for n. Take any vertex u in G. Since every other
vertex has a unique common neighbor with u, we can compute the number of
vertices in the graph by counting �neighbors of neighbors" of u. By step 2, u and
all its neighbors have degree k, so taking the sum of degrees of neighbors of u gives
k2. This counts every vertex exactly once - except for u itself, which is counted k
times. Accounting for this we get

n = k2 − k + 1.
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Looking at this equation, we see that if k = 1 or k = 0 then n = 1 and if k = 2
then n = 3, so by the friendship condition we get a 3-cycle. Since both of these
graphs have politician vertices, so we conclude that k > 2.

Remark 2.3. Since k2 ≡ k (mod 2), this shows that n is odd. It is also easy to prove
that n must be odd if G has a politician (see below) so already we have shown that
any �nite graph satisfying the friendship condition has an odd number of vertices.

Step 4 - Eigenvalues of the adjacency matrix. Label all the vertices v1, · · · , vn
of G, and consider the adjacency matrix A = (aij) de�ned by

aij =

{
1 vi adjacent to vj

0 otherwise.

This matrix is obviously symmetric, with 0 on the diagonal (no vertices are
adjacent to themselves), and precisely k 1s in each row and column (since the
degree of every vertex is k). Also, by the unique common neighbor condition, in
any two rows there is exactly one column where both have a 1. Hence

A2 =


k 1 · · · 1
1 k · · · 1
...

. . .
...

1 1 · · · k

 = (k − 1)In + J

where In is the n× n identity matrix and J is the n× n matrix consisting entirely
of 1s.

It is not hard to guess the eigenvectors of J . We have
1 1 · · · 1
1 1 · · · 1
...

. . .
...

1 1 · · · 1

 ·

−1
−1
...

n− 1

 = 0

and permuting the entries of this vector we quickly get n− 1 linearly independent
eigenvectors of A with eigenvalue 0. Also

1 1 · · · 1
1 1 · · · 1
...

. . .
...

1 1 · · · 1

 ·

1
1
...
1

 = n ·


1
1
...
1


so J also has an eigenvalue n of multiplicity 1. It immediately follows that A has
eigenvalues k − 1 of multiplicity n− 1 and n+ k − 1 of multiplicity 1. Recall from
step 3 that n+ k − 1 = k2.

Now A is symmetric, so it is diagonalizable to a matrix whose (diagonal) entries
are the eigenvalues of A. The same is true of A2, and therefore the eigenvalues of
A2 are squares of the eigenvalues of A. Hence A has eigenvalues ±k of multiplicity
1 (multiplying A with a vector of 1s we see that the eigenvalue is in fact k), and
eigenvalues

√
k − 1 of multiplicity r and −

√
k − 1 of multiplicity s, for some r, s

with r + s = n− 1.
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Step 5. Since the trace of A is 0, and the trace is the sum of the eigenvalues, we
have

k + (r − s)
√
k − 1 = 0.

Since k > 2 we conclude r 6= s and hence
√
k − 1 =

k

s− r

so
√
k − 1 ∈ N by Dedekind's theorem. Setting h =

√
k − 1 we get

k = h2 + 1

and re-writing our equation for the trace of A,

k = h(s− r).

so h divides h2 + 1. Hence h = 1 and therefore k = 2, which we have proved to be
impossible.

3. The emergence of windmills

Once we have exposed the politician, it is not hard to see what form the graph
must take. Let p represent the politician vertex, and u be any other vertex in the
graph. p and u must have a unique common neighbor v. If v is adjacent to any
other vertex x then p is also adjacent to x, since p is a politician, and so v and p
will have two common neighbors u and x, a contradiction.

Therefore the only neighbors of v are p and u, and likewise the only neighbors
of u are p and v. We end up with a �windmill" similar to �gure 1

Since every vertex u 6= p can be paired o� with another vertex u1 in this way,
the graph must have an odd number of vertices.

4. Extension of the problem

De�nition 4.1 (Path). We de�ne a path in G to be a sequence of (not necessarily
distinct) vertices v1, v2, · · · in G such that every vi is adjacent to vi+1 for every i.
We de�ne the length of the path to be the length of the sequence.

It is clear that our friendship condition is equivalent to saying that there is a
unique path of length l = 2 between any two vertices in G. We have shown that
the only possible graph satisfying this condition is a windmill.

It has been conjectured by Anton Kotzig that there are no �nite graphs which
satisfy this condition for any l > 2. Kotzig's conjecture has been veri�ed for l ≤ 33,
but the situation for arbitrary l remains something of a mystery.
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