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1. Introduction

The colouring of plane graphs has been an area of great interest to mathemati-
cians since the beginnings of graph theory. This is mainly due to its connection to
one of the most famous and elusive problems of the subject: the four colour prob-
lem. The problem was first posed by Francis Guthrie in 1852 and asked whether
it was always possible to colour the regions of a plane map with four colours such
that the regions which share a common boundary receive different colours.
This question remained unanswered for over a century and withstood numerous
attempts at a solution. In 1976, Kenneth Appel and Wolfgang Haken finally suc-
ceeding in proving the problem using a method of attack unavailable to the math-
ematicians of the 19th century: it was the first proof of a major theorem using a
computer. While the proof was initially met with scepticism, it is now generally
accepted to be correct. A simpler proof was given in 1997 by Robertson, Sanders,
Seymour and Thomas to further dispel any doubts.
This report will tackle the much more manageable problem of whether the regions
of a map can be coloured with only 5 colours. This question had been answered by
the turn of the 20th century by English mathematician Percy John Heawood. We
shall follow the proof from [1, Chapter 38], with the inclusion of some additional
notes presented in Daniel Matthew’s talk.

2. Plane Maps to Plane Graphs

Figure 1. The dual graph of a
map

It may not be immediately apparent how our
discussion above about the colouring of maps
relates to the colouring of plane graphs. It is
easy to demonstrate that these two tasks are
the same.
A colouring of a plane graph is an assignment of
colours to each vertex such that no two vertices
of the same colour are joined by an edge. For a
given map M , we can construct its dual graph
as follows: place a vertex in the interior of each
region (including the outer region) and connect
two such vertices belonging to neighbouring re-
gions by an edge through the common bound-
ary. The resulting graphG is a plane graph, and
colouring vertices of G corresponds to colouring
regions of M .
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3. Every plane graph is 6-colourable

We shall start with a warm-up problem: showing that every plane graph is 6-
colourable. Any plane graph divides the plane into a finite number of connected
regions (including the outer region), which are referred to as faces. The relation
between the number of vertices, edges and faces of a plane graph is captured by
Euler’s Formula, a proof of which can be found in [1, Chapter 13].

Euler’s Formula. If G is a connected plane graph with n vertices, e edges and f
faces then

n− e+ f = 2

Figure 2. This plane graph has 6 vertices, 10 edges and 6 faces

We will need the following result in the proof that every plane graph is 6-
colourable.

Proposition. Let G be any simple plane graph with n > 2 vertices then G has a
vertex of degree at most 5.

Proof. We can count the number of faces of G as follows: let fk denote the number
of faces that are bounded by k edges, then

(1) f = f1 + f2 + f3 + f4 + . . .

Since every edge is a side of two faces, we see that

(2) 2e = f1 + 2f2 + 3f3 + 4f4 + . . .

G is simple, so every face has at least 3 sides. Using (1) and (3) we get

f = f3 + f4 + f5 + . . .

and

2e = 3f3 + 4f4 + 5f5 + . . .

Thus

2e− 3f = (3f3 + 4f4 + 5f5 + . . .)− 3(f3 + f4 + f5 . . .) ≥ 0

Using Euler’s Formula we get

3n− 6 = 3(e− f) = e+ (2e− 3f) ≥ e

We can use this bound on the number of edges to get a bound on the average degree
d of G

d =
2e

n
≤ 6n− 12

n
< 6

If the lowest degree of any vertex in G is 6, then the average degree cannot be less
than 6. Therefore there must be a vertex of degree at most 5. �
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Define the chromatic number of G, denoted χ(G), to be the smallest number
of colours with which we can find a colouring of G. The problem can be stated
succinctly as follows:

Theorem. χ(G) ≤ 6 for any plane graph G.

Proof. We carry out the proof by induction on the number n of vertices of G. For
n ≤ 6 the truth of the statement is obvious since we can colour every vertex of G
with a different colour.
From the proposition above, we know that G has a vertex v of degree at most 5.
Remove v and all edges connected to it from G. The resulting graph G′ = G\{v} is
a plane graph with n− 1 vertices. By our induction hypothesis, G is 6-colourable.
Since v has at most 5 neighbours, at most 5 colours are used for these neighbours in
the colouring of G′. Therefore we can extend our 6-colouring of G′ to a 6-colouring
of G by assigning a colour to v that is different to any of the colours of it neighbours
in G′. Thus G is 6-colourable. �

4. Every plane graph is 5-colourable

We now move on to the main result of the report. In fact, we will go even further:
we shall prove that every plane graph is 5-list colourable.

Definition. Suppose in the graph G = (V,E) we are given a set C(v) of colours
for each v ∈ V . A list colouring is a colouring of G such that every vertex v is
assigned a colour from its corresponding colour set C(v).
We define the list chromatic number χl(G) to be the smallest number k such that
for any list of colour sets with |C(v)| = k for all v ∈ V a list colouring exists.

Ordinary colouring of graphs is just a special case of list colouring, namely when
all the colour sets are the same. Therefore,

χ(G) ≤ χl(G)

For an example of a graph G with χ(G) < χ(G), consider the complete bipartite
graph K2,4. The chromatic number of any bipartite graph is 2, but suppose we
have the colour sets as shown below.

Figure 3. Bipartite graph K2,4 with colour sets of size 2

All of the four possibilities for colouring the left vertices appears as a colour set
on the right-had side. Therefore no list colouring is possible. The reader can check
that χl(K2,4) = 3.
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If we prove the below theorem we will have required result:

Theorem. All planar graphs G can be 5-list coloured:

χl(G) ≤ 5

Before moving on to the proof, we note that adding edges to a graph can only in-
crease the chromatic number. Therefore we can assume that G is near-triangulated,
that is, all bounded faces have triangles as boundaries. Proving the theorem for
near triangulated graphs will establish the result for all plane graphs.

Figure 4. Near triangulating a plane graph

If we show the following stronger result, the theorem is proved:

Proposition. Let G = (V,E) be a near-triangulated graph, and let B be the cycle
bounding the outer region. We make the following assumptions on the colour sets
C(v), v ∈ V :
(1) Two adjacent vertices x, y of B are already coloured with different colours α
and β.
(2) |C(v)| ≥ 3 for all other vertices v of B.
(3) |C(v)| ≥ 5 for all vertices v in the interior.

Then the colouring of x, y can be extended to a list colouring of G. In particu-
lar, χl(G) ≤ 5.

Proof. We proceed by induction on the number n of vertices of G. For |V | = 3 the
result is obvious since we can colour every vertex with a different colour. We must
consider two cases to complete the proof.

Case 1: Suppose that there is an edge
which is not in B that joins two vertices
u, v ∈ B, as shown in the figure across.
The subgraph G1 satifies all of the con-
ditions in the proposition and has fewer
vertices than G. Therefore it has a 5-
list colouring by induction. If we fix
this colouring of G1, then we can take
u and v as being pre-coloured vertices
in the lower subgraph G2. Viewed like
this, G2 also satisfies the conditions in
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the proposition. Therefore G2 can be 5-list coloured, and the same is true for G.

Case 2: Suppose that no such edge as
in Case 1 exists. Let v0 be the other
vertex which is adjacent x on B, and
let x, v1, . . . , vt, w be all vertices adja-
cent to v0, as shown in the figure across.
Construct the near-triangulated graph
G′ = G\{v0} by removing the ver-
tex v0 and all edges connected to it
from G. The outer boundary of G is
B′ = (B\{v0}) ∪ {v1, . . . vt}. By as-
sumption (2), |C(v0)| ≥ 3, so there are
two colours γ, δ in C(v0) different from α. Now replace every colour set C(vi) by
C(vi)\{γ, δ}, leaving the other colour sets in G′ unchanged. Then we have that
|C(v)| ≥ 3 for v ∈ B′ and |C(v)| ≥ 5 for all others vertices in G′. Therefore G′

satisfies the conditions of the proposition and has fewer vertices than G, so it has
a 5-list colouring by induction. By adding v0 back in and colouring it either γ or
δ, we can extend the list colouring of G′ to a list colouring of G.

�

5. A Further Conjecture

A stronger conjecture than the 5-list colour theorem claimed that the list-chromatic
number of a plane graph G is at most 1 more than the ordinary chromatic number.
In light of the 4-colour theorem, we have three cases to consider:

Case 1: χ(G) = 2⇒ χl(G) ≤ 3
Case 2: χ(G) = 3⇒ χl(G) ≤ 4
Case 3: χ(G) = 4⇒ χl(G) ≤ 5

The result that we have just proved deals with Case 3, and Case 1 was shown to
be true by Alon and Tarsi.
This leaves us with Case 2, which actually turns out to be false. An example of
a graph which is 3-colourable but not 4-list colourable was first demonstrated by
Margit Voigt. The graph on 130 vertices was originally constructed by Shai Gutner
as follows:

Figure 5. ”Double octahedon”

Consider the ”double octahedron” as
shown across. It is easily seen to be 3-
colourable. For the lists given in the
figure, let α ∈ {5, 6, 7, 8} and β ∈
{9, 10, 11, 12}. The reader can check
that a list colouring with these lists is
not possible. We can construct a new
graph by taking 16 copies of this graph
and identifying all top vertices and all
bottom vertices (it is perhaps easier vi-
sualise the graph as being on the sur-
face of a sphere). This new graph has
16 · 8 + 2 = 130 vertices, and is still a
3-colourable plane graph. Now, assign
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the colour list {5, 6, 7, 8} to the top vertex and {9, 10, 11, 12} to the bottom vertex.
For the remaining colour lists, let all 16 permutations of (α, β), α ∈ {5, 6, 7, 8},
β ∈ {9, 10, 11, 12} appear across all of the 16 double octahedron subgraphs. With
these lists, given any choice of colours for the top vertex and bottom vertex, there
will be a double octahedron subgraph for which a list-colouring is not possible.
Therefore a list colouring of the entire graph is not possible. Thus we have con-
structed a graph that is 3-colourable but not 4-list colourable.
Since this first discovery, plane graphs with fewer vertices have been found that
have a chromatic number of 3 and list chromatic number of 5. At present, the
current record for such a graph contains 63 vertices.
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