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1 Introduction

We present the proof of an interesting result relating matrix determinants and graphs, and its
application both as a tool to prove other identities and to relate certain determinant problems
to subject of counting paths in a lattice, following [1] and the talk by Oisin Flynn-Connolly.

2 The Lemma

Let M = (m;)1<ij<n be a real n x n matrix. We have

det M = Z Mig(1) - - - Mne(n)

geS,

Consider a weighted directed bipartite graph with vertex sets {Ay,..., A,} and {By,..., By},
and edges from each A; — B; weighted by m;.

Definition 2.1. The weight w(P) of a path P in a weighted directed graph is the product
[I.cp w(e) of the weights of the edges in the path.

Definition 2.2. If A = {A4;,...,A,} and B = {By,..., B,} are vertices in a directed graph,
then a path system P from A to B is a collection of paths F; : A; — By(;) for some o € S,,. We
define sgn(P) = sgn(o) and the weight of P

w(P) = w(P)w(Py) ... w(P,)
For the graph defined above, we have
det M = Z sgn(P)w(P)
P:A-B

It turns out that this is a special case of a useful general result, originally proven by Ernst
Lindstrom in 1972, and rediscovered in 1985 by Ira Gessel and Gerard Viennot to apply to
various combinatiorial problems.

Let G = (V,E) be a finite weighted acyclic directed graph. Let A = {A4,,...,A,} and
B ={By,...,B,} be subsets of V, not necessarily disjoint.

Definition 2.3. The path matriz from A to B is the matrix M = (myj)i1<ij<n Wwith m;; =
>_pia;sp, W(P) (summation over all paths).

A path system P = (Py,...,F,) is said to be vertex-disjoint if the paths P; are pairwise
vertex-disjoint, i.e. have no vertices in common.

Lemma 2.1 (Lindstréom,Gessel,Viennot). With A, B, P, M as before we have

det(M) = Z sgn(P)w(P)
P:A=B

vertex-disjoint
path system

1



Proof. By grouping the path systems P, corresponding to different o, we find

det(M) = Z sgn(a)H Z w(F;) = Z sgn(o) Z w(P,) = Z sgn(P)w(P)

oES, i=1 Pi:Ai_>Bo'(i) oES, Py A—B P:A—B

with summation over all path systems.

We therefore must show
Z sgn(P)w(P) =0
P:A—=B

not vertex-disjoint

Let N be the set of non-vertex-disjoint path systems. We shall define a bijective map 7 : N — N
satisfying w(m(P)) = w(P) and sgn(m(P)) = —sgn(P). Let P = (Py,..., P,) be non-vertex-
disjoint. Let 49 be the minimal ¢ such that P; shares a vertex with some other P;. Let ) be the
first vertex in the path P;; that is shared with some P;. Let jo > ¢o be the minimal j # 4 such
that P; passes through . Thus we have paths

X:A4,—=Q
YA, =+Q
Z3Q_>Ba(z'0)
W Q — Bogy)

with Py = Z-X and Pj, = W-Y. Let P, = W-X : Ay = By, and Pl = Z-Y : Aj = Boy)-
Then if P, = Py for ig # k # jo, we may define 7(P) = (P],..., P}). This satisfies w(m(P)) =
w(P), as w(P; )w(P}) = w(X)wY)w(Z)w(W) = w(F;,)w(Pj,) and all other factors are the
same. We have P} : Ay — By where o'(ig) = 0(jo), 0'(jo) = o(ip) and o'(k) = o(k) for
ig # k # jo. Thus o' differs from o by a transposition and sgn(o’) = —sgn(o). So

sgn(m(P)) = sgn(o’) = —sgn(o) = —sgn(P)

as required. 7 is bijective as we see from its construction that 7(7(P)) = P, as ig, @, jo will be
the same for 7(P) as P
Thus

Y sen(Pu(P)= Y sen(r(P)w(n(P)) =~ Y sgu(P)uw(P)

P:A—B P:A—B P:A—B

— Z sgn(P)w(P) =0
P:A-=B
> sen(P)w(P)= > sgn(P)w(P)

P:A=B P:A-B
vertex-disjoint

3 Further Results

This result has various useful applications. Firstly, we may use it to prove the following formula
for the determinant of a product of non-square matrices.



Theorem 3.1. If P = (p;;) is an r X s matriz and Q = (g;;) is an s X r matriz, r < s, then

det(PQ) =Y _ det(Pz) det(Qz)

with summation over subsets Z C {1,...,s} of size r, Pz the r X r matriz with column-set Z
and @)z the r X r matriz with row-set Z

Proof. We construct a weighted directed bipartite graph between A4 = {A;,..., A,} and B =
{Bi,...,Bs} with edges A; — B; having weights p;;. We construct also a graph between B and
C={C,...,C,} with edges B; — C; having weights ¢;;. When put together these give a graph
G between A and C with path matrix M = PQ:

mij = Z w(P) = Zpik(ﬂcj = (PQ)i
k=1

P:Ai%Cj

since paths A; — C; pass through some By.

Let N, = {1,...,n} A vertex-disjoint path system in G consists of the concatenation of a
vertex-disjoint path system P; : A — Z for some Z C B of size r, and Py : Z — C. Then
w(P) = w(Pr)w(P2) and sgn(P) = sgn(P1) sgn(P1) so the result follows immediately. O

There are many other applications of the lemma to specific problems. For example, one
might ask the following question:

Given some integers a; < --- < a,, by < --- < b, what is the determinant of the matrix with
entries m;; = (Z;)‘? (if @ < b then (}) = 0)

Let us consider an a x b lattice of points. How many ways are there to travel from the bottom
left corner to the top right corner by a series of steps north and east between points? We may
represent such a journey as a string made up of the letters N and F, and in order to travel from
one corner to the other, the string must contain a Es and b Ns. The number of such strings is
the number of ways to choose b positions in a string of length a + b, i.e. (a;:b).

Returning to the original problem, construct a graph whose vertices are integer points in the
region of the xy plane between z = 0 and y = —z with y negative (cut off at sime sufficiently
low level), and whose edges point north or east between adjacent vertices all with weight one as
shown below. Let A; = (0,—a;) and B; = (b;, —b;). Then the graph between A; and B; forms

an (a; — b;) x b; lattice, and the path matrix M between A and B is

e B ()

P:Ai%Bj

By

-‘1] ] -




Vertex-disjoint path systems must go A; — B; (i.e. 0 = 1) otherwise the paths would cross.
Thus det(M) is the number of lattice path systems (P; : A; — B;),, so it is always positive
and in particular det(M) =0 <= Ji:q; < b;.
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