Lattice Paths and Determinants

Daniel Mulcahy

1 Introduction

We present the proof of an interesting result relating matrix determinants and graphs, and its application both as a tool to prove other identities and to relate certain determinant problems to subject of counting paths in a lattice, following [1] and the talk by Oisin Flynn-Connolly.

2 The Lemma

Let $M = (m_{ij})_{1 \leq i,j \leq n}$ be a real $n \times n$ matrix. We have

$$\det M = \sum_{\sigma \in S_n} m_{1\sigma(1)} \cdots m_{n\sigma(n)}$$

Consider a weighted directed bipartite graph with vertex sets $\{A_1, \ldots, A_n\}$ and $\{B_1, \ldots, B_n\}$, and edges from each $A_i \rightarrow B_j$ weighted by m_{ij}.

Definition 2.1. The weight $w(P)$ of a path P in a weighted directed graph is the product $\prod_{e \in P} w(e)$ of the weights of the edges in the path.

Definition 2.2. If $A = \{A_1, \ldots, A_n\}$ and $B = \{B_1, \ldots, B_n\}$ are vertices in a directed graph, then a path system \mathcal{P} from A to B is a collection of paths $P_i : A_i \rightarrow B_{\sigma(i)}$ for some $\sigma \in S_n$. We define $\operatorname{sgn}(\mathcal{P}) = \operatorname{sgn}(\sigma)$ and the weight of \mathcal{P}

$$w(\mathcal{P}) = w(P_1)w(P_2)\cdots w(P_n)$$

For the graph defined above, we have

$$\det M = \sum_{\mathcal{P} : A \rightarrow B} \operatorname{sgn}(\mathcal{P})w(\mathcal{P})$$

It turns out that this is a special case of a useful general result, originally proven by Ernst Lindström in 1972, and rediscovered in 1985 by Ira Gessel and Gerard Viennot to apply to various combinatorial problems.

Let $G = (V, E)$ be a finite weighted acyclic directed graph. Let $A = \{A_1, \ldots, A_n\}$ and $B = \{B_1, \ldots, B_n\}$ be subsets of V, not necessarily disjoint.

Definition 2.3. The path matrix from A to B is the matrix $M = (m_{ij})_{1 \leq i,j \leq n}$ with $m_{ij} = \sum_{P : A_i \rightarrow B_j} w(P)$ (summation over all paths).

A path system $\mathcal{P} = (P_1, \ldots, P_n)$ is said to be vertex-disjoint if the paths P_i are pairwise vertex-disjoint, i.e., have no vertices in common.

Lemma 2.1 (Lindström, Gessel, Viennot). With A, B, \mathcal{P}, M as before we have

$$\det(M) = \sum_{\mathcal{P} : A \rightarrow B \text{ vertex-disjoint}} \operatorname{sgn}(\mathcal{P})w(\mathcal{P})$$
Proof. By grouping the path systems P_σ corresponding to different σ, we find

$$\det(M) = \sum_{\sigma \in S_n} \text{sgn}(\sigma) \prod_{i=1}^n \sum_{P_i : A_i \to B_{\sigma(i)}} w(P_i) = \sum_{\sigma \in S_n} \text{sgn}(\sigma) \sum_{P_\sigma : A \to B} w(P_\sigma) = \sum_{\mathcal{P} : A \to B} \text{sgn}(\mathcal{P}) w(\mathcal{P})$$

with summation over all path systems.

We therefore must show

$$\sum_{\mathcal{P} : A \to B \text{ not v-d}} \text{sgn}(\mathcal{P}) w(\mathcal{P}) = 0$$

Let N be the set of non-vertex-disjoint path systems. We shall define a bijective map $\pi : N \to N$ satisfying $w(\pi(\mathcal{P})) = w(\mathcal{P})$ and $\text{sgn}(\pi(\mathcal{P})) = -\text{sgn}(\mathcal{P})$. Let $\mathcal{P} = (P_1, \ldots, P_n)$ be non-vertex-disjoint. Let i_0 be the minimal i such that P_i shares a vertex with some other P_j. Let Q be the first vertex in the path P_{i_0} that is shared with some P_j. Let $j_0 > i_0$ be the minimal $j \neq i$ such that P_j passes through Q. Thus we have paths

$$X : A_{i_0} \to Q$$
$$Y : A_{j_0} \to Q$$
$$Z : Q \to B_{\sigma(i_0)}$$
$$W : Q \to B_{\sigma(j_0)}$$

with $P_{i_0} = Z \cdot X$ and $P_{j_0} = W \cdot Y$. Let $P'_{i_0} = W \cdot X : A_{i_0} \to B_{\sigma(j_0)}$ and $P'_{j_0} = Z \cdot Y : A_{j_0} \to B_{\sigma(i_0)}$. Then if $P'_k = P_k$ for $i_0 \neq k \neq j_0$, we may define $\pi(\mathcal{P}) = (P'_1, \ldots, P'_n)$. This satisfies $w(\pi(\mathcal{P})) = w(\mathcal{P})$, as $w(P'_{i_0}) w(P'_{j_0}) = w(X) w(Y) w(Z) w(W) = w(P_{i_0}) w(P_{j_0})$ and all other factors are the same. We have $P'_{i_0} : A_k \to B_{\sigma'(k)}$, where $\sigma'(i_0) = \sigma(j_0)$, $\sigma'(j_0) = \sigma(i_0)$ and $\sigma'(k) = \sigma(k)$ for $i_0 \neq k \neq j_0$. Thus σ' differs from σ by a transposition and $\text{sgn}(\sigma') = -\text{sgn}(\sigma)$. So

$$\text{sgn}(\pi(\mathcal{P})) = \text{sgn}(\sigma') = -\text{sgn}(\sigma) = -\text{sgn}(\mathcal{P})$$

as required. π is bijective as we see from its construction that $\pi(\pi(\mathcal{P})) = \mathcal{P}$, as i_0, Q, j_0 will be the same for $\pi(\mathcal{P})$ as \mathcal{P}

Thus

$$\sum_{\mathcal{P} : A \to B \text{ not v-d}} \text{sgn}(\mathcal{P}) w(\mathcal{P}) = \sum_{\mathcal{P} : A \to B \text{ not v-d}} \text{sgn}(\pi(\mathcal{P})) w(\pi(\mathcal{P})) = -\sum_{\mathcal{P} : A \to B \text{ not v-d}} \text{sgn}(\mathcal{P}) w(\mathcal{P})$$

$$\implies \sum_{\mathcal{P} : A \to B \text{ not v-d}} \text{sgn}(\mathcal{P}) w(\mathcal{P}) = 0$$

$$\therefore \sum_{\mathcal{P} : A \to B \text{ vertex-disjoint}} \text{sgn}(\mathcal{P}) w(\mathcal{P}) = \sum_{\mathcal{P} : A \to B} \text{sgn}(\mathcal{P}) w(\mathcal{P})$$

\square

3 Further Results

This result has various useful applications. Firstly, we may use it to prove the following formula for the determinant of a product of non-square matrices.
Theorem 3.1. If \(P = (p_{ij}) \) is an \(r \times s \) matrix and \(Q = (q_{ij}) \) is an \(s \times r \) matrix, \(r \leq s \), then

\[
\det(PQ) = \sum_{Z} \det(P_Z) \det(Q_Z)
\]

with summation over subsets \(Z \subset \{1, \ldots, s\} \) of size \(r \), \(P_Z \) the \(r \times r \) matrix with column-set \(Z \) and \(Q_Z \) the \(r \times r \) matrix with row-set \(Z \).

Proof. We construct a weighted directed bipartite graph between \(A = \{A_1, \ldots, A_r\} \) and \(B = \{B_1, \ldots, B_s\} \) with edges \(A_i \to B_j \) having weights \(p_{ij} \). We construct also a graph between \(B \) and \(C = \{C_1, \ldots, C_s\} \) with edges \(B_i \to C_j \) having weights \(q_{ij} \). When put together these give a graph \(G \) between \(A \) and \(C \) with path matrix \(M = PQ \):

\[
m_{ij} = \sum_{P:A_i \to C_j} w(P) = \sum_{k=1}^{s} p_{ik}q_{kj} = (PQ)_{ij}
\]

since paths \(A_i \to C_j \) pass through some \(B_k \).

There are many other applications of the lemma to specific problems. For example, one might ask the following question:

Given some integers \(a_1 < \cdots < a_n, b_1 < \cdots < b_n \) what is the determinant of the matrix with entries \(m_{ij} = \binom{a_i}{b_j} \)? (if \(a < b \) then \(\binom{a}{b} = 0 \))

Let us consider an \(a \times b \) lattice of points. How many ways are there to travel from the bottom left corner to the top right corner by a series of steps north and east between points? We may represent such a journey as a string made up of the letters \(N \) and \(E \), and in order to travel from one corner to the other, the string must contain \(a \) Es and \(b \) Ns. The number of such strings is the number of ways to choose \(b \) positions in a string of length \(a + b \), i.e. \(\binom{a+b}{b} \).

Returning to the original problem, construct a graph whose vertices are integer points in the region of the \(xy \) plane between \(x = 0 \) and \(y = -x \) with \(y \) negative (cut off at some sufficiently low level), and whose edges point north or east between adjacent vertices all with weight one as shown below. Let \(A_i = (0, -a_i) \) and \(B_i = (b_i, -b_i) \). Then the graph between \(A_i \) and \(B_j \) forms an \((a_i - b_j) \times b_j \) lattice, and the path matrix \(M \) between \(A \) and \(B \) is

\[
m_{ij} = \sum_{P:A_i \to B_j} 1 = \binom{(a_i - b_j) + b_j}{b_j} = \binom{a_i}{b_j}
\]
Vertex-disjoint path systems must go $A_i \rightarrow B_i$ (i.e. $\sigma = 1$) otherwise the paths would cross. Thus $\det(M)$ is the number of lattice path systems $(P_i : A_i \rightarrow B_i)_{i=1}^n$, so it is always positive and in particular $\det(M) = 0 \iff \exists i : a_i < b_i$.

References