Lattice Paths and Determinants

Daniel Mulcahy

1 Introduction

We present the proof of an interesting result relating matrix determinants and graphs, and its application both as a tool to prove other identities and to relate certain determinant problems to subject of counting paths in a lattice, following [1] and the talk by Oisín Flynn-Connolly.

2 The Lemma

Let $M=\left(m_{i j}\right)_{1 \leq i, j \leq n}$ be a real $n \times n$ matrix. We have

$$
\operatorname{det} M=\sum_{\sigma \in S_{n}} m_{1 \sigma(1)} \ldots m_{n \sigma(n)}
$$

Consider a weighted directed bipartite graph with vertex sets $\left\{A_{1}, \ldots, A_{n}\right\}$ and $\left\{B_{1}, \ldots, B_{n}\right\}$, and edges from each $A_{i} \rightarrow B_{j}$ weighted by $m_{i j}$.
Definition 2.1. The weight $w(P)$ of a path P in a weighted directed graph is the product $\prod_{e \in P} w(e)$ of the weights of the edges in the path.
Definition 2.2. If $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ and $\mathcal{B}=\left\{B_{1}, \ldots, B_{n}\right\}$ are vertices in a directed graph, then a path system \mathcal{P} from \mathcal{A} to \mathcal{B} is a collection of paths $P_{i}: A_{i} \rightarrow B_{\sigma(i)}$ for some $\sigma \in S_{n}$. We define $\operatorname{sgn}(\mathcal{P})=\operatorname{sgn}(\sigma)$ and the weight of \mathcal{P}

$$
w(\mathcal{P})=w\left(P_{1}\right) w\left(P_{2}\right) \ldots w\left(P_{n}\right)
$$

For the graph defined above, we have

$$
\operatorname{det} M=\sum_{\mathcal{P}: \mathcal{A} \rightarrow \mathcal{B}} \operatorname{sgn}(\mathcal{P}) w(\mathcal{P})
$$

It turns out that this is a special case of a useful general result, originally proven by Ernst Lindström in 1972, and rediscovered in 1985 by Ira Gessel and Gerard Viennot to apply to various combinatiorial problems.

Let $G=(V, E)$ be a finite weighted acyclic directed graph. Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ and $\mathcal{B}=\left\{B_{1}, \ldots, B_{n}\right\}$ be subsets of V, not necessarily disjoint.

Definition 2.3. The path matrix from \mathcal{A} to \mathcal{B} is the matrix $M=\left(m_{i j}\right)_{1 \leq i, j \leq n}$ with $m_{i j}=$ $\sum_{P: A_{i} \rightarrow B_{j}} w(P)$ (summation over all paths).

A path system $\mathcal{P}=\left(P_{1}, \ldots, P_{n}\right)$ is said to be vertex-disjoint if the paths P_{i} are pairwise vertex-disjoint, i.e. have no vertices in common.

Lemma 2.1 (Lindström, Gessel,Viennot). With $\mathcal{A}, \mathcal{B}, \mathcal{P}, M$ as before we have

$$
\operatorname{det}(M)=\sum_{\substack{\mathcal{P}: \mathcal{A} \rightarrow \mathcal{A}, \mathcal{B} \\ \text { vertext } \\ \text { path sysistem }}} \operatorname{sgn}(\mathcal{P}) w(\mathcal{P})
$$

Proof. By grouping the path systems \mathcal{P}_{σ} corresponding to different σ, we find

$$
\operatorname{det}(M)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} \sum_{P_{i}: A_{i} \rightarrow B_{\sigma(i)}} w\left(P_{i}\right)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \sum_{\mathcal{P}_{\sigma}: \mathcal{A} \rightarrow \mathcal{B}} w\left(\mathcal{P}_{\sigma}\right)=\sum_{\mathcal{P}: \mathcal{A} \rightarrow \mathcal{B}} \operatorname{sgn}(\mathcal{P}) w(\mathcal{P})
$$

with summation over all path systems.
We therefore must show

$$
\sum_{\substack{\mathcal{P}: \mathcal{A} \rightarrow \mathcal{B} \\ \text { not vertex-disjoint }}} \operatorname{sgn}(\mathcal{P}) w(\mathcal{P})=0
$$

Let N be the set of non-vertex-disjoint path systems. We shall define a bijective map $\pi: N \rightarrow N$ satisfying $w(\pi(\mathcal{P}))=w(\mathcal{P})$ and $\operatorname{sgn}(\pi(\mathcal{P}))=-\operatorname{sgn}(\mathcal{P})$. Let $\mathcal{P}=\left(P_{1}, \ldots, P_{n}\right)$ be non-vertexdisjoint. Let i_{0} be the minimal i such that P_{i} shares a vertex with some other P_{j}. Let Q be the first vertex in the path $P_{i_{0}}$ that is shared with some P_{j}. Let $j_{0}>i_{0}$ be the minimal $j \neq i$ such that P_{j} passes through Q. Thus we have paths

$$
\left.\begin{array}{rl}
X & : A_{i_{0}} \\
Y & \rightarrow Q \\
Z: Q & \rightarrow B_{\sigma\left(i_{0}\right)} \\
Z & : Q
\end{array}\right) B_{\sigma\left(j_{0}\right)} .
$$

with $P_{i_{0}}=Z \cdot X$ and $P_{j_{0}}=W \cdot Y$. Let $P_{i_{0}}^{\prime}=W \cdot X: A_{i_{0}} \rightarrow B_{\sigma\left(j_{0}\right)}$ and $P_{j}^{\prime}=Z \cdot Y: A_{j_{0}} \rightarrow B_{\sigma\left(i_{0}\right)}$. Then if $P_{k}^{\prime}=P_{k}$ for $i_{0} \neq k \neq j_{0}$, we may define $\pi(\mathcal{P})=\left(P_{1}^{\prime}, \ldots, P_{n}^{\prime}\right)$. This satisfies $w(\pi(\mathcal{P}))=$ $w(\mathcal{P})$, as $w\left(P_{i_{0}}^{\prime}\right) w\left(P_{j_{0}}^{\prime}\right)=w(X) w(Y) w(Z) w(W)=w\left(P_{i_{0}}\right) w\left(P_{j_{0}}\right)$ and all other factors are the same. We have $P_{k}^{\prime}: A_{k} \rightarrow B_{\sigma^{\prime}(k)}$ where $\sigma^{\prime}\left(i_{0}\right)=\sigma\left(j_{0}\right), \sigma^{\prime}\left(j_{0}\right)=\sigma\left(i_{0}\right)$ and $\sigma^{\prime}(k)=\sigma(k)$ for $i_{0} \neq k \neq j_{0}$. Thus σ^{\prime} differs from σ by a transposition and $\operatorname{sgn}\left(\sigma^{\prime}\right)=-\operatorname{sgn}(\sigma)$. So

$$
\operatorname{sgn}(\pi(\mathcal{P}))=\operatorname{sgn}\left(\sigma^{\prime}\right)=-\operatorname{sgn}(\sigma)=-\operatorname{sgn}(\mathcal{P})
$$

as required. π is bijective as we see from its construction that $\pi(\pi(\mathcal{P}))=\mathcal{P}$, as i_{0}, Q, j_{0} will be the same for $\pi(\mathcal{P})$ as \mathcal{P}

Thus

$$
\begin{gathered}
\sum_{\substack{\mathcal{P}: \mathcal{A} \rightarrow \mathcal{B} \\
\text { not v-d }}} \operatorname{sgn}(\mathcal{P}) w(\mathcal{P})= \\
\quad \sum_{\substack{\mathcal{P}: \mathcal{A} \rightarrow \mathcal{B} \\
\text { not v-d }}} \operatorname{sgn}(\pi(\mathcal{P})) w(\pi(\mathcal{P}))=-\sum_{\substack{\mathcal{P}: \mathcal{A} \rightarrow \mathcal{B} \\
\text { not } \mathrm{v}-\mathrm{d}}} \operatorname{sgn}(\mathcal{P}) w(\mathcal{P}) \\
\\
\therefore \sum_{\substack{\mathcal{P}: \mathcal{A} \rightarrow \mathcal{B} \\
\text { not } \mathrm{v}-\mathrm{d}}} \operatorname{sgn}(\mathcal{P}) w(\mathcal{P})=0 \\
\therefore \sum_{\substack{\mathcal{P}: \mathcal{A} \rightarrow \mathcal{B} \\
\text { vertex-disjoint }}} \operatorname{sgn}(\mathcal{P}) w(\mathcal{P})=\sum_{\mathcal{P}: \mathcal{A} \rightarrow \mathcal{B}} \operatorname{sgn}(\mathcal{P}) w(\mathcal{P})
\end{gathered}
$$

3 Further Results

This result has various useful applications. Firstly, we may use it to prove the following formula for the determinant of a product of non-square matrices.

Theorem 3.1. If $P=\left(p_{i j}\right)$ is an $r \times s$ matrix and $Q=\left(q_{i j}\right)$ is an $s \times r$ matrix, $r \leq s$, then

$$
\operatorname{det}(P Q)=\sum_{\mathcal{Z}} \operatorname{det}\left(P_{\mathcal{Z}}\right) \operatorname{det}\left(Q_{\mathcal{Z}}\right)
$$

with summation over subsets $\mathcal{Z} \subset\{1, \ldots, s\}$ of size $r, P_{\mathcal{Z}}$ the $r \times r$ matrix with column-set \mathcal{Z} and $Q_{\mathcal{Z}}$ the $r \times r$ matrix with row-set \mathcal{Z}

Proof. We construct a weighted directed bipartite graph between $\mathcal{A}=\left\{A_{1}, \ldots, A_{r}\right\}$ and $\mathcal{B}=$ $\left\{B_{1}, \ldots, B_{s}\right\}$ with edges $A_{i} \rightarrow B_{j}$ having weights $p_{i j}$. We construct also a graph between \mathcal{B} and $\mathcal{C}=\left\{C_{1}, \ldots, C_{r}\right\}$ with edges $B_{i} \rightarrow C_{j}$ having weights $q_{i j}$. When put together these give a graph G between \mathcal{A} and \mathcal{C} with path matrix $M=P Q$:

$$
m_{i j}=\sum_{P: A_{i} \rightarrow C_{j}} w(P)=\sum_{k=1}^{s} p_{i k} q_{k j}=(P Q)_{i j}
$$

since paths $A_{i} \rightarrow C_{j}$ pass through some B_{k}.
Let $N_{n}=\{1, \ldots, n\}$ A vertex-disjoint path system in G consists of the concatenation of a vertex-disjoint path system $\mathcal{P}_{1}: \mathcal{A} \rightarrow \mathcal{Z}$ for some $\mathcal{Z} \subset \mathcal{B}$ of size r, and $\mathcal{P}_{2}: \mathcal{Z} \rightarrow \mathcal{C}$. Then $w(\mathcal{P})=w\left(\mathcal{P}_{1}\right) w\left(\mathcal{P}_{2}\right)$ and $\operatorname{sgn}(\mathcal{P})=\operatorname{sgn}\left(\mathcal{P}_{1}\right) \operatorname{sgn}\left(\mathcal{P}_{1}\right)$ so the result follows immediately.

There are many other applications of the lemma to specific problems. For example, one might ask the following question:

Given some integers $a_{1}<\cdots<a_{n}, b_{1}<\cdots<b_{n}$ what is the determinant of the matrix with entries $m_{i j}=\binom{a_{i}}{b_{j}}$? (if $a<b$ then $\binom{a}{b}=0$)

Let us consider an $a \times b$ lattice of points. How many ways are there to travel from the bottom left corner to the top right corner by a series of steps north and east between points? We may represent such a journey as a string made up of the letters N and E, and in order to travel from one corner to the other, the string must contain $a E s$ and $b N s$. The number of such strings is the number of ways to choose b positions in a string of length $a+b$, i.e. $\binom{a+b}{b}$.

Returning to the original problem, construct a graph whose vertices are integer points in the region of the $x y$ plane between $x=0$ and $y=-x$ with y negative (cut off at sime sufficiently low level), and whose edges point north or east between adjacent vertices all with weight one as shown below. Let $A_{i}=\left(0,-a_{i}\right)$ and $B_{i}=\left(b_{i},-b_{i}\right)$. Then the graph between A_{i} and B_{j} forms an $\left(a_{i}-b_{j}\right) \times b_{j}$ lattice, and the path matrix M between \mathcal{A} and \mathcal{B} is

$$
m_{i j}=\sum_{P: A_{i} \rightarrow B_{j}} 1=\binom{\left(a_{i}-b_{j}\right)+b_{j}}{b_{j}}=\binom{a_{i}}{b_{j}}
$$

Vertex-disjoint path systems must go $A_{i} \rightarrow B_{i}$ (i.e. $\sigma=1$) otherwise the paths would cross. Thus $\operatorname{det}(M)$ is the number of lattice path systems $\left(P_{i}: A_{i} \rightarrow B_{i}\right)_{i=1}^{n}$, so it is always positive and in particular $\operatorname{det}(M)=0 \Longleftrightarrow \exists i: a_{i}<b_{i}$.

References

[1] Martin Aigner and Günter M. Ziegler. Proofs from The Book. Springer-Verlag, Berlin, fifth edition, 2014. Including illustrations by Karl H. Hofmann.

