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1. Introduction

There are several results on combinatorics of subsets of a finite set N = {1, 2, . . . , n} that have been very historically
significant and inspired the development of new areas of mathematics. We present three of these theorems following
[1] and the talk by Aiden Mathieu: the theorems of Sperner and Erdős-Ko-Rado and Hall’s ”Marriage theorem”

2. Sperner’s Theorem

This question was proposed and solved by Emanuel Sperner in 1928, but the argument we present is by David
Lubell. Let N = {1, 2, . . . , n}

Definition 1. An antichain in N is a family of subsets F of N such that no subset in F is contained in another.

We may ask what is the size of the largest antichain?
The family Fk consisting of subsets of order k is an antichain of size

(
n
k

)
= n!

k!(n−k)! , and the largest of these is(
n
bn/2c

)
. Sperner’s theorem tells us that there is none larger.

Theorem 1 (Sperner). For any antichain F ,

|F| ≤
(

n

bn/2c

)
Proof. Consider chains of subsets ∅ = C0 ⊂ C1 ⊂ · · · ⊂ Cn = N . Each Ci+1 must contain one more element than
Ci, i.e. such a chain consists of adding each element of N one by one, so the number of such chains is n!, the number
of permutations of N . Let A ⊂ N of size k. The number of chains containing A is the number of ways to form a
chain ∅ = C0 ⊂ C1 ⊂ · · · ⊂ Ck = A multiplied by the number of ways to form A = Ck ⊂ Ck+1 ⊂ · · · ⊂ Cn = N ,
which is k!(n − k)!. Let F be an antichain; then no two elements of F can appear in the same chain. Thus if
mk = |{A ∈ F | |A| = k}|, the total number of chains containing sets in F is

n∑
k=0

mkk!(n− k)! ≤ n!

n∑
k=0

mk(
n
k

) ≤ 1

min
k

{
1(
n
k

)} n∑
k=0

mk ≤ 1

1

maxk

{(
n
k

)} |F| ≤ 1

1(
n
bn/2c

) |F| ≤ 1

|F| ≤
(

n

bn/2c

)

�

3. Erdős-Ko-Rado Theorem

This result was found in 1938 by Paul Erdős, Chao Ko and Richard Rado, but this proof is due to Gyula Katona.

Definition 2. A family F of subsets of N is called an intersecting family if A∩B 6= ∅ ∀A,B ∈ F . An intersecting
family consisting of sets of size k is called an intersecting k-family.
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The largest intersecting family is of size 2n−1, e.g. the family of all subsets that contain 1. This is maximal as
for any A ⊂ N, A ∩ (N \ A) = ∅ so no intersecting family can contain more than half of the 2n subsets of N . If
k > n

2 then any two subsets of size k intersect. Otherwise by taking all sets of size k that contain 1, we obtain an

intersecting k-family of size
(
n−1
k−1
)

Theorem 2 (Erdős-Ko-Rado). For any intersecting k-family F , |F| ≤
(
n−1
k−1
)

if n ≥ 2k.

Proof. Consider a circle divided into n edges by n points. An arc of length k consists of k consecutive edges joining
k + 1 points.

Lemma 1. Suppose we have t different arcs A1, . . . , At of length k, where n ≥ 2k, such that any two arcs have an
edge in common. Then t ≤ k.

Proof. No two arcs may share an endpoint: if they did they would have to start in different directions as they are
distinct, but then they could not share an edge as n ≥ 2k. Each A2, . . . , At overlaps with A1 and must therefore
have a distinct endpoint at one of the k − 1 points inside A1, meaning there are at most k − 1 of them.

∴ t ≤ k

�

Up to rotation there are (n − 1)! ways of writing the numbers 1 to n on the edges of an n-edged circle. For a
chosen such circle, there are by the lemma at most k sets A ∈ F that appear as arcs on the circle; thus there are at
most k(n−1)! ways of representing elements of F on any such circle. Given A ∈ F , there are k!(n−k)! possible ways
to represent A on such a circle: k! ways to order the elements of A consecutively and (n− k)! for the rest. Therefore

|F| ≤ k(n− 1)!

k!(n− k)!
=

(n− 1)!

(k − 1)!(n− 1− (k − 1))!
=

(
n− 1

k − 1

)
�

4. Marriage Theorem

Proven by Philip Hall in 1935, this very important theorem led to the field of matching theory.

Definition 3. Let A1, . . . , An be subsets of a finite set X. A system of distinct representatives (SDR) of {A1, . . . , An}
is a sequence of dictinct x1, . . . , xn such that xi ∈ Ai∀i.

This was referred to as the marriage theorem as, if we have n girls and a set X of boys, and the i’th girl is
romantically interested in a set Ai, a system of distinct representatives provide each girl a distinct boy xi to marry.

Clearly if an SDR exists then the union of any m distinct Ai must contain at least the m distinct elements xi. It
turns out that this condition is sufficient.

Theorem 3. If the union of any m distinct Ai contains at least m elements (1 ≤ m ≤ n), then an SDR exists

Proof. Induction on n: n = 1 trivial. Let n > 1. We call a collection of l sets Ai (1 ≤ l ≤ n) whose union
contains exactly l elements a critical family. Suppose no critical family exists. Let xn be some element of An and
Ãi = Ai \ {xn} for 1 ≤ i ≤ n − 1. For any m sets Ai1 , . . . Aim with ik < n we know Ai1 ∪ . . . Aim contains at least

m+ 1 elements, so Ãi1 ∪ . . . Ãim contains at least m elements, so by induction Ã1, . . . Ãn−1 has an SDR x1, . . . , xn−1
and thus x1, . . . , xn−1, xn is an SDR for A1, . . . , An.

Suppose alternatively that a critical family exists, assume wlog it is A1, . . . Al. Then {A1, . . . Al} as subsets of

X ′ =
⋃l

i=1 Ai satisfy the condition of the theorem so has an SDR x1, . . . , xl. For any m of Al+1, . . . , An their

combined union with X ′ must contain at least l + m elements. Therefore if Ãi = Ai \X ′ for l + 1 ≤ i ≤ n we have

that the union of any m Ãi contains at least m elements, so these have an SDR xl+1, . . . , xn disjoint from X ′ (which
is also an SDR for {Al+1, . . . , An}. Thus x1, . . . , xn is an SDR for {A1, . . . , An} �
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