THREE FAMOUS THEOREMS ON FINITE SETS

DANIEL MULCAHY

1. Introduction

There are several results on combinatorics of subsets of a finite set $N=\{1,2, \ldots, n\}$ that have been very historically significant and inspired the development of new areas of mathematics. We present three of these theorems following [1] and the talk by Aiden Mathieu: the theorems of Sperner and Erdős-Ko-Rado and Hall's "Marriage theorem"

2. Sperner's Theorem

This question was proposed and solved by Emanuel Sperner in 1928, but the argument we present is by David Lubell. Let $N=\{1,2, \ldots, n\}$

Definition 1. An antichain in N is a family of subsets \mathcal{F} of N such that no subset in \mathcal{F} is contained in another.
We may ask what is the size of the largest antichain?
The family \mathcal{F}_{k} consisting of subsets of order k is an antichain of size $\binom{n}{k}=\frac{n!}{k!(n-k)!}$, and the largest of these is $\binom{n}{\lfloor n / 2\rfloor}$. Sperner's theorem tells us that there is none larger.

Theorem 1 (Sperner). For any antichain \mathcal{F},

$$
|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}
$$

Proof. Consider chains of subsets $\varnothing=C_{0} \subset C_{1} \subset \cdots \subset C_{n}=N$. Each C_{i+1} must contain one more element than C_{i}, i.e. such a chain consists of adding each element of N one by one, so the number of such chains is $n!$, the number of permutations of N. Let $A \subset N$ of size k. The number of chains containing A is the number of ways to form a chain $\varnothing=C_{0} \subset C_{1} \subset \cdots \subset C_{k}=A$ multiplied by the number of ways to form $A=C_{k} \subset C_{k+1} \subset \cdots \subset C_{n}=N$, which is $k!(n-k)$!. Let \mathcal{F} be an antichain; then no two elements of \mathcal{F} can appear in the same chain. Thus if $m_{k}=|\{A \in \mathcal{F}| | A \mid=k\}|$, the total number of chains containing sets in \mathcal{F} is

$$
\begin{aligned}
& \sum_{k=0}^{n} m_{k} k!(n-k)! \leq n! \\
& \sum_{k=0}^{n} \frac{m_{k}}{\binom{n}{k}} \leq 1 \\
& \min _{k}\left\{\frac{1}{\binom{n}{k}}\right\} \sum_{k=0}^{n} m_{k} \leq 1 \\
& \frac{1}{\max _{k}\left\{\binom{n}{k}\right\}}|\mathcal{F}| \leq 1 \\
& \frac{1}{\binom{n}{\lfloor n / 2\rfloor}}|\mathcal{F}| \leq 1 \\
&|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}
\end{aligned}
$$

3. Erdős-Ko-Rado Theorem

This result was found in 1938 by Paul Erdős, Chao Ko and Richard Rado, but this proof is due to Gyula Katona.
Definition 2. A family \mathcal{F} of subsets of N is called an intersecting family if $A \cap B \neq \varnothing \forall A, B \in \mathcal{F}$. An intersecting family consisting of sets of size k is called an intersecting k-family.

The largest intersecting family is of size 2^{n-1}, e.g. the family of all subsets that contain 1 . This is maximal as for any $A \subset N, A \cap(N \backslash A)=\varnothing$ so no intersecting family can contain more than half of the 2^{n} subsets of N. If $k>\frac{n}{2}$ then any two subsets of size k intersect. Otherwise by taking all sets of size k that contain 1 , we obtain an intersecting k-family of size $\binom{n-1}{k-1}$
Theorem 2 (Erdős-Ko-Rado). For any intersecting k-family $\mathcal{F},|\mathcal{F}| \leq\binom{ n-1}{k-1}$ if $n \geq 2 k$.
Proof. Consider a circle divided into n edges by n points. An arc of length k consists of k consecutive edges joining $k+1$ points.

Lemma 1. Suppose we have t different arcs A_{1}, \ldots, A_{t} of length k, where $n \geq 2 k$, such that any two arcs have an edge in common. Then $t \leq k$.

Proof. No two arcs may share an endpoint: if they did they would have to start in different directions as they are distinct, but then they could not share an edge as $n \geq 2 k$. Each A_{2}, \ldots, A_{t} overlaps with A_{1} and must therefore have a distinct endpoint at one of the $k-1$ points inside A_{1}, meaning there are at most $k-1$ of them.

$$
\therefore t \leq k
$$

Up to rotation there are $(n-1)$! ways of writing the numbers 1 to n on the edges of an n-edged circle. For a chosen such circle, there are by the lemma at most k sets $A \in \mathcal{F}$ that appear as arcs on the circle; thus there are at most $k(n-1)$! ways of representing elements of \mathcal{F} on any such circle. Given $A \in F$, there are $k!(n-k)$! possible ways to represent A on such a circle: k ! ways to order the elements of A consecutively and $(n-k)$! for the rest. Therefore

$$
|\mathcal{F}| \leq \frac{k(n-1)!}{k!(n-k)!}=\frac{(n-1)!}{(k-1)!(n-1-(k-1))!}=\binom{n-1}{k-1}
$$

4. Marriage Theorem

Proven by Philip Hall in 1935, this very important theorem led to the field of matching theory.
Definition 3. Let A_{1}, \ldots, A_{n} be subsets of a finite set X. A system of distinct representatives (SDR) of $\left\{A_{1}, \ldots, A_{n}\right\}$ is a sequence of dictinct x_{1}, \ldots, x_{n} such that $x_{i} \in A_{i} \forall i$.

This was referred to as the marriage theorem as, if we have n girls and a set X of boys, and the i 'th girl is romantically interested in a set A_{i}, a system of distinct representatives provide each girl a distinct boy x_{i} to marry.

Clearly if an SDR exists then the union of any m distinct A_{i} must contain at least the m distinct elements x_{i}. It turns out that this condition is sufficient.
Theorem 3. If the union of any m distinct A_{i} contains at least m elements $(1 \leq m \leq n)$, then an $S D R$ exists
Proof. Induction on $n: n=1$ trivial. Let $n>1$. We call a collection of l sets $A_{i}(1 \leq l \leq n)$ whose union contains exactly l elements a critical family. Suppose no critical family exists. Let x_{n} be some element of A_{n} and $\tilde{A}_{i}=A_{i} \backslash\left\{x_{n}\right\}$ for $1 \leq i \leq n-1$. For any m sets $A_{i_{1}}, \ldots A_{i_{m}}$ with $i_{k}<n$ we know $A_{i_{1}} \cup \ldots A_{i_{m}}$ contains at least $m+1$ elements, so $\tilde{A}_{i_{1}} \cup \ldots \tilde{A}_{i_{m}}$ contains at least m elements, so by induction $\tilde{A}_{1}, \ldots \tilde{A}_{n-1}$ has an SDR x_{1}, \ldots, x_{n-1} and thus $x_{1}, \ldots, x_{n-1}, x_{n}$ is an SDR for A_{1}, \ldots, A_{n}.

Suppose alternatively that a critical family exists, assume wlog it is $A_{1}, \ldots A_{l}$. Then $\left\{A_{1}, \ldots A_{l}\right\}$ as subsets of $X^{\prime}=\bigcup_{i=1}^{l} A_{i}$ satisfy the condition of the theorem so has an $\operatorname{SDR} x_{1}, \ldots, x_{l}$. For any m of A_{l+1}, \ldots, A_{n} their combined union with $X^{\prime} \underset{\sim}{\text { m }}$ must contain at least $l+m$ elements. Therefore if $\tilde{A}_{i}=A_{i} \backslash X^{\prime}$ for $l+1 \leq i \leq n$ we have that the union of any $m \tilde{A}_{i}$ contains at least m elements, so these have an SDR x_{l+1}, \ldots, x_{n} disjoint from X^{\prime} (which is also an SDR for $\left\{A_{l+1}, \ldots, A_{n}\right\}$. Thus x_{1}, \ldots, x_{n} is an SDR for $\left\{A_{1}, \ldots, A_{n}\right\}$

References

[1] Martin Aigner and Günter M. Ziegler. Proofs from The Book. Springer-Verlag, Berlin, fifth edition, 2014. Including illustrations by Karl H. Hofmann.

