
ONE SQUARE AND AN ODD NUMBER OF TRIANGLES

OISÍN FLYNN-CONNOLLY

1. Introduction

Monsky’s theorem states that a square cannot be dissected into an odd number
of triangles. Despite an apparently simple statement, the proof quite complex,
involving fairly high level mathematics. Two sections (parts 2 and 4) of this note
thus provide a review of the standard results in valuation theory and combinatorics
we will need. In part 3 we prove the existence of a valuation v such that v( 1

2 ) > 1.
In part 5 we use this valuation to construct a 3-colouring of the plane satisfying
the axioms of Sperner’s Lemma. Another property of this colouring, from which
Monsky’s theorem follows, is that any triangle with vertices having all different
colours cannot have area 1

n , for odd n. This note is an expanded rearrangement of
the material in [1, Chapter 20] and Ronan O’Gorman’s talk. The changes include
more examples and the addition of a historical background.

2. Background to the problem

A well-researched class of questions in geometry and topology are the dissection
problems. These ask if, given some geometric object (typically a polytope or ball),
we can partition it into the finite pairwise disjoint union of smaller ‘pieces.’ Such
a partitioning is known as a dissection. For example, given a some plane figure R,
these pieces might be triangles of equal area. The resulting partition is referred to
as an equidissection.

Such problems have been posed since antiquity. Euclid’s celebrated proof of
Pythagoras’s Theorem rests on a triangle dissection. More recently, the Wallace-
Bolyai-Gerwien theorem (1807) states that any two plane polygons of the same area
may be decomposed into the same number of pairwise congruent triangles.

Another apparently simple question, and one that would have been easily un-
derstood by the ancient Greeks, is: for what n ∈ N can we dissect a square into n
equally sized triangles?

So when Fred Richman of New Mexico State University was writing a Master’s
exam in 1965, he considered this problem a natural candidate for inclusion. It
proved substantially less tractable than he originally expected, and he was surprised
to be unable to find a proof or even a reference for it. Eventually he wrote to the
American Mathematical Monthly to pose it as a challenge to other researchers.

Five years passed. It wasn’t until 1970, Paul Monsky - building upon the work
of John Thomas (who proved it when all triangles have rational coordinates) - was
finally able to publish a full solution. His proof, which will be the object to this
report, was seemingly shooting cannons at sparrows - utilizing both combinatorial
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topology and valuation theory. Perhaps the biggest surprise of all is that, nearly
50 years later, this remains the only known proof.

3. The theory of valuations

Definition 3.1. Given some field K, a valuation on K to R≥0 is a map

v : K→ R≥0

satisfying the following:

(1) v(x) = 0 if and only x = 0.
(2) v(xy) = v(x)v(y) for all x, y ∈ K.
(3) v(x + y) ≤ v(x) + v(y) for all x, y ∈ K.

Example 3.2. The absolute value function ‖ · ‖ on R. Indeed, generalizing ‖ · ‖
was the original motivation for valuations.

Example 3.3. Every field has the trivial valuation. This is defined as

• v(x) = 1 if x ∈ K\{0}.
• v(0) = 0.

Example 3.4. If v is a valuation on some field, then vt is also a valuation for all
t ∈ R+.

Definition 3.5. A valuation on K is called non-Archimedean if v(x+y) ≤ max(v(x), v(y))
for all x, y ∈ K.

Remark 3.6. v(x) and v(y) are non-negative by condition (1) in the definition of
valuations. Therefore v(x + y) ≤ max(v(x), v(y)) ≤ v(x) + v(y). We conclude that
the non-Archimedean condition is nothing but a stronger version of condition (3).

Example 3.7. Let p be a prime number. Then given nonzero r ∈ Q, r is of the
form pk · ab where gcd(ab, p) = 1. We define the p-adic valuation on Q as ‖r‖p = p−k

and ‖0‖p = 0.

Lemma 3.8. ‖ · ‖p is a non-Archimedean valuation on Q.

Proof. It is obvious that ‖·‖p satisfies the first two defining conditions of a valuation.
Now let r = pk a

b and s = pl cd where we assume without loss of generality that k ≥ l.
In other words, ‖r‖p ≤ ‖s‖p. Now

‖r + s‖p = ‖pk a
b

+ pl
c

d
‖p ≤ p−l‖p

k−lad + bc

bd
‖p ≤ p−l ≤ max(‖r‖p, ‖s‖p).

So ‖ · ‖p satisfies the non-Archimedean condition. This is stronger than (3) so we
can conclude ‖ · ‖p is a non-Archimedean valuation on Q. �

One of the reasons p-adic valuations are of interest is that all non-trivial valu-
ations on Q are either p-adic or nearly so. The following theorem of Ostrowski,
which we shall not prove, makes this concrete.

Theorem 3.9. Every nontrivial valuation on Q is either ‖ · ‖p for a unique prime
p, the standard absolute value on Q or ‖ · ‖sp for a positive real number s and a
unique prime p.

The notion of a valuation as given in Definition 3.1 is insufficiently general for
our aims. To remedy this we will first need to introduce the idea of an ordered
abelian group.
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Definition 3.10. An ordered abelian group (OAG) is an abelian group (G, ·)
equipped with a total order < such that

a < b =⇒ a · c < b · c for all c ∈ G.

We usually consider an ordered abelian group together with 0 /∈ G such that

• 0 · a = 0 for all a ∈ {0} ∪G.
• 0 < a for all a ∈ G.

Example 3.11. R+ under multiplication with the usual ordering < is an OAG.

As we are taking the operation on ordered abelian groups to be multiplication,
we will refer to the identity element as 1.

Remark 3.12. Suppose a group G with total ordering <′ has torsion i.e. an
element g 6= 1 such that gn = 1. As 6= is a total order we have either g 6= 1 or 1 6= g.
If g 6= 1 we obtain g <′ g2. and, continuing, 1 <′ g <′ g2 <′ · · · <′ gn = 1. This
gives 1 6= 1, a contradiction to the non-reflexivity of 6=. An symmetric argument
gives a contradiction when 1 6= g. We conclude that any OAG must be torsion-free.

Conversely, it can be shown any torsion-free abelian group G admits a total order
< such that (G, ·, <) is an OAG.

Definition 3.13. Given some field K and an OAG G, a valuation on K with values
in G is a map

v : K→ {0} ∪G

satisfying the following:

(1) v(x) = 0 if and only x = 0.
(2) v(xy) = v(x)v(y) for all x, y ∈ K.
(3) v(x + y) ≤ v(x) + v(y) for all x, y ∈ K.

v is called non-Archimedean if v(x + y) ≤ max(v(x), v(y)) for all x, y ∈ K.

We will now prove a lemma establishing the basic properties of valuations.

Lemma 3.14. Let v be a valuation from K with values in G. Then we have

(1) v(1) = 1.
(2) v(−x) = v(x) for all x ∈ K.
(3) v(x−1) = v(x)−1 for all x ∈ K.
(4) If v(x) < 1 and x 6= 0 then v(x−1) > 1
(5) If v is non-Archimedean and we have x, y ∈ K such that v(x) > v(y) then

v(x + y) = v(x).
(6) If v is non-Archimedean and we have x, y1, y2 . . . , yn ∈ K such that v(x) >

v(y1), v(y2), . . . , v(yn) then v(x + y1 + y2 + · · ·+ yn) = v(x).

Proof.

(1) v(1) = v(1 · 1) = v(1) · v(1). Therefore we have v(1) = 1.
(2) v(−1)2 = v(−1 · −1) = v(1) = 1. G is torsion-free and in particular has no

elements of order 2. Thus v(−1) = 1. Then v(−x) = v(−1) · v(x) = v(x).
(3) 1 = v(x · x−1) = v(x) · v(x−1) =⇒ v(x−1) = v(x)−1.
(4) By (2), v(x−1) = v(x)−1. Now v(x) > 1 =⇒ 1 > v(x)−1 as required.
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(5) v(x) = v(x + y + (−y)) ≤ max(v(x + y), v(−y)) ≤ max(v(x + y), v(y)) ≤
max(max(v(x), v(y)), v(y)) = v(x). The two ends of this chain of inequal-
ities are equal, and thus all these inequalities become equalities. In par-
ticular v(x) = max(v(x + y), v(y)) and v(x) 6= v(y) by assumption, so
v(x + y) = v(x).

(6) We use induction on n. When n = 1 we have v(x) = v(x + y1) by (5).
Assume the inductive hypothesis for n = k. Then v(x+y1 +y2 + · · ·+yk) =
v(x) > v(yk+1). Thus, by (5) we have v(x + y1 + y2 + · · ·+ yk+1) = v((x +
y1 + y2 + · · ·+ yk) + yk+1) = v(x + y1 + y2 + · · ·+ yk) = v(x) as required.

�

The following definition and lemma are, up to the direction of inequalities, stan-
dard in commutative algebra.

Definition 3.15. Let v be a valuation on K with values in some OAG. Then

R = {x ∈ K : v(x) ≤ 1}
is a subring of K, called the valuation ring corresponding to v.

Lemma 3.16. Given a field K and a proper subring R, let R−1 := {x ∈ K : x−1 ∈
R, x 6= 0}. Then there exists a valuation v from K into some OAG such that R is
the valuation ring corresponding to v if and only if K = R ∪R−1.

Proof. Suppose we have our valuation v and R is the valuation ring corresponding
to v. Suppose v(x) /∈ R. =⇒ v(x) > 1. Then by Lemma 3.14, v(x−1) < 1 =⇒
x−1 ∈ R. So R ∪R−1 = K.

Now suppose R ∪R−1 = K. Let U := {x ∈ R : x invertible in R}. Also let

G := K×/U.
We turn G into an ordered abelian group by imposing the following order relation
on it.

xU < yU ⇔ xy−1 ∈ R\U.
It is straightforward to verify that this satisfies the order axioms. Define:

v(x) := xU.

It is easy to see v is a valuation and that R is the valuation ring with respect to
it. �

And thus concludes our brief introduction to valuations. In the next subsection,
we will draw upon much of this theory to prove a highly non-trivial result on the
existence of a valuation on R with certain prescribed properties.

4. A valuation with v( 1
2 ) > 1

Theorem 4.1. There exists a non-Archimedean valuation v from R to some ordered
abelian group satisfying v( 1

2 ) > 1.

We will give two proofs. The first of these is at least partially constructive and
will hinge on a powerful result from algebra. The second is that given explicitly in
Proofs from THE BOOK.

Proof 1. Consider the 2-adic valuation on Q. Now ‖ 1
2‖2 = 21 = 2 > 1.

Chevalley’s theorem from algebra (which’s proof we shall omit) states:
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Theorem. Any non-Archimedean valuation v of a field F into an algebraically
ordered ring Φ with divisible multiplicative group can be extended to a valuation of
every field E containing F .

We have previously shown that the 2-adic valuation is non-Archimedean. Taking
F to be R and E to be Q, we see that the 2-adic valuation can be extended from
Q to R and this extension has the requisite properties. �

Remark. Note that we have actually proven something much stronger than The-
orem 4.1. We have shown the existence of a valuation from from R to R≥0, that is,
a valuation in the classical sense.

Proof 2. Consider the set M of subrings R ⊆ R, 1
2 /∈ R ordered by inclusion. Every

ascending chain of subrings

B1 ⊂ B2 ⊂ · · · ⊂ Bi ⊂ · · ·
is bounded above by ∪i∈NBi. M thus satisfies the conditions of Zorn’s Lemma and
has a maximal element. Therefore there exists an inclusion-maximal subring R ⊆ R
satisfying 1

2 /∈ R.
Next we prove the following lemma:

Lemma 4.2. Any inclusion-maximal subring R ⊆ R satisfying 1
2 /∈ R, is a valua-

tion ring.

Proof. Assume R is not a valuation ring. Then, by Lemma 3.16, there exists an
element a ∈ R which is not in R or R−1. Now consider R[a] and R[a−1]. Both
of these contain R, which was the maximal subring not containing 1

2 . Thus both

contain 1
2 . Therefore 2R[a] = R[a] and 2R[a−1] = R[a−1]. In particular, 2R[a] and

2R[a−1] both contain 1. So we can write:

(1) 1 = 2u0 + 2u1a + 2u2a
2 + · · ·+ 2umam with ui ∈ R

(2) 1 = 2v0 + 2v1a
−1 + 2u2a

−2 + · · ·+ 2vna
−n with vi ∈ R

where we have chosen the representations such that n and m are minimal. We
assume without loss of generality that m ≥ n.

We multiply equation (2) by an and subtract 2v0a
n from both sides to obtain

(3) (1− 2v0)an = 2v1a
n−1 + 2u2a

n−2 + · · ·+ 2vn

Now multiply (1) by 1− 2v0 and add 2v0 giving

(4) 1 = 2(u0(1− 2v0) + v0) + 2u1(1− 2v0)a + · · ·+ 2um(1− 2v0)am.

We can substitute here for the term (1− 2v0)am, by taking equation (3) and mul-
tiplying it by am−n. We obtain an expression for 1 where a is of degree strictly less
than m. This contradicts our earlier assumption – thus proving the lemma. �

By the lemma, the maximal subring existing by virtue of Zorn’s Lemma is a
valuation ring. Therefore there exists a valuation ring R such that 1

2 /∈ R. We

consider the valuation v corresponding to R. Note that 1
2 /∈ R =⇒ v( 1

2 ) > 1. So
we can simply take v to be the valuation in the statement of the theorem. �

The following property of v will prove useful later.

Lemma 4.3. For v in the statement of Theorem 4.1 and n an odd integer, we have
v(± 1

n ) = 1.
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Proof. v( 1
2 ) > 1 =⇒ v(2) < 1 Then v(2 + 2) ≤ maxv(2), v(2) = v(2) < 1 and, by

induction, v(2k) < 1 for all positive integers k. v(2k+ 1) = v(1) = 1 by lemma 3.14
part (5). Thus v( 1

2k+1 ) = v(− 1
2k+1 ) = 1. as required. �

5. Sperner’s Lemma

Given the statement of the problem, if Monsky’s proof drew only from the world
of valuations it would be strange enough, but we are about to take yet another
esoteric detour.

Brouwer’s fixed-point theorem is a well known result in topology stating that for
any continuous function f mapping a compact convex set – usually taken to be the
n-ball – to itself there is a point x0 such that f(x0) = x0. Less well-known perhaps
is the theorem’s combinatorial analog, to which it is equivalent – Sperner’s Lemma.
In full generality this states:

Theorem 5.1. Let A be to a n-dimensional simplex A1A2 . . . An+1. We consider
a triangulation T which is a disjoint division of A into smaller n-dimensional sim-
plices. Denote the colouring function as f : S → {1, 2, 3, . . . , n, n + 1}, where S is
again the set of vertices of T . The rules of colouring are:

• The vertices of the large simplex are coloured with different colours.
• Vertices of T located on any k-dimensional subface of the large simplex
Ai1Ai2 . . . Aik+1

are colored only with the colours i1, i2, . . . , ik+1

Then there exists an odd number of simplices from T , whose vertices are coloured
with all n + 1 colours. In particular, there must be at least one.

We will be interested the following very specific version of Sperner’s Lemma
specialized to two dimensions.

Theorem 5.2. Colour R2 with three colours, with a colouring such that every
line of the plane receives at most two colours. We require also that (0, 0), (0, 1) and
(1, 0) are different colours. We further require (0, 0) is not the same colour as (1, 1).
Every dissection of the unit square S = [0, 1]2 into finitely many triangles contains
an odd number of triangles with vertices all different colours (BGR triangles), and
thus at least one.

The figure below shows the colour for each point in the unit square whose co-
ordinates are fractions of the form k

20 , for one such colouring of the plane. The
particular colouring chosen will be important in the next section.
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We shall give the traditional proof of this result, attributed to a certain Emanuel
Sperner.

Proof. We will take the three colours to be red, blue and green. Given a dissection
of S = [0, 1]2, consider the segments between each vertex. We will call a segment
a red-blue segment if one endpoint is red and the other is blue. We can assume
without loss of generality that (0, 0) is red, (1, 0) is blue and thus (0, 1) is green.

First, observe that bottom edge of the square must contain an odd number of
red-blue segments. This follows from the fact (0, 0) is red and (1, 0) is blue, by
assumption the edge has only red and blue vertices, and therefore the walk from
one end to another must have an odd number of changes between red and blue. Also
note that the other edges of the square contain no red-blue segments. Therefore
the edge of the square contains an odd number of red-blue segments.

Secondly, observe that for any triangle 4 in the dissection with at most two
colours on its vertices, an even number of its edges, either two or zero, are red-blue
segments. Every BGR triangle however, has one red-blue segment on its boundary
– an odd number.

Lastly, we count the number of red-blue edges summed across every triangle
in the dissection. This can be accomplished in two ways. First, counting each
triangle is equivalent to counting every segment in the interior of the square twice
and those on the boundary once. Since we know the bottom edge of the square
contains an odd number of red-blue segments our total is odd. Then we can count
the individual triangles directly. By our second observation, each BGR triangle
contributes an odd number and every other triangle gives an even number. Thus
we have an odd number of BGR triangles and, in particular, at least one. �

Remark. The first observation – that bottom edge of the square contains an odd
number of red-blue segments – is actually just Sperner’s Lemma in one direction.
This hints that one can adapt this proof to the general case by induction on the
dimension .

We are now finally ready to meet our main result.

6. Monsky’s Theorem

Theorem 6.1. It is possible to dissect a square into an n triangles of equal area if
and only if n is even.

The proof we will give is slightly simplified version of Monsky’s original colouring
argument. The simplification is due to Hendrik Lenstra.

Proof. One direction of the proof is almost trivial. If n is even we can divide both
the top and bottom edge of the square into n

2 equal intervals and connect the
endpoints in a zigzag fashion as illustrated below.
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If n is odd, things become more involved. By translation and homothety we can
assume the square in question is [0, 1]2 By Theorem 4.1, there exists a valuation
v from R to some ordered abelian group satisfying v( 1

2 ) > 1. Use v to construct a

colouring f : R2 → {blue, green, red} as follows. Given (x, y) ∈ R2,

f(x, y) =


blue if v(x) ≥ v(y), v(x) ≥ v(1)

green if v(x) < v(y), v(y) ≥ v(1)

red if v(x) < v(1), v(y) < v(1)

This assigns each point of the plane a unique colour. The figure immediately
after Theorem 5.2 shows values of this colouring at points on a 20 × 20 lattice
overlayed across the unit square.

The next step is to prove the following lemma on the various properties of this
colouring. As in the proof of theorem 5.2, we refer to any triangle with vertices
coloured three different colours as a BGR triangle.

Lemma 6.2.

(1) There is no BGR triangle in R2 with area equal to 1
n for any odd number

n.
(2) Any line in R2 contains points of at most two colours.

Proof. Let pB , pG, pR ∈ R2 be coloured blue, green and red respectively. Recall
from first year linear algebra that up to a sign

Area of 4(pB , pG, pR) =
1

2
det

xB yB 1
xG yG 1
xR yR 1


Now, observe that the construction of the colouring means that the max-valued
term in the expansion of this determinant lies along the diagonal. Indeed all other
terms xi · yj · 1 must draw at least one entry from below the diagonal. Thus
v(xB · yG · 1) ≥ v(xi · yj · 1), and recalling that v is non-Archimedean and lemma
3.14, v(2 · area4(pB , pG, pR) = v(xB · yG · 1) = v(xB)v(yG)v(1) ≥ v(1)v(1)v(1) ≥ 1

Now, to prove (1), suppose the area 4(pB , pG, pR) was ± 1
n . Then we have

v(2 ·area4(pB , pG, pR) = v(± 2
n ) = v( 1

2 )−1v(± 1
n ) We recall now that v( 1

2 ) > 1 and,

for odd n, v(± 1
n ) = 1. (lemma 4.3). We find therefore that v(2·area4(pB , pG, pR) <

1. This is a contradiction to it being greater or equal to 1 and we conclude that no
such BGR triangles exist.

To prove (2), we simply note that if pB , pG, pR lie in a line, the area of the triangle
thus formed is 0. v(0) = 0, which also contradicts v(2 · area4(pB , pG, pR) ≥ 1. �

The conclusion follows swiftly from this lemma. Note that, from the definition
of the colouring, (0, 0) is coloured red, (0, 1) green, (1, 0) blue and (1, 1) also blue.
Together with (2) of the lemma, all the conditions for the form of Sperner’s Lemma
we proved in section 5 are met. We conclude that any dissection of the unit square
into triangles contains at least one BGR triangle.

Using (1) of the lemma, we deduce this triangle cannot have area 1
n with n odd.

But since the unit square has area 1, this means not all the triangles can have equal
area. So the theorem is proved. �

.
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