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1. Introduction

George Pólya, a Hungarian mathematician, has made numberous contributions
to analysis. While the chapter is entitled ”a theorem,” it would be more accurate
to describe it as ”twice a theorem” regarding complex monic polynomials. Both
statements of the theorem are essentially consequences of Chebyshev’s celebrated
theorem, but have surprising and elegant results. This paper expands upon [1,
Chapter 23] and David Glynn’s talk.

2. Projections of sets onto a line

We consider polynomials in C. Suppose that f(z) is a complex monic polynomial
of degree n ≥ 1. We define the set C to be all points in C mapped under f into
the circle of radius 2; that is, C := {z ∈ C : |f(z)| ≤ 2}. We permit C to be
disconnected.

For any line L in the complex plane, the projection of the set C onto L has a
maximum length of 4. While this is clearly true for f(z) when n = 1 (in which case,
C is a disk of diameter 4 and thus has a maximal projection of length 4), Pólya
showed that this holds for any choice of monic f(z) and thus C.

Figure 1
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Remark 2.1. Through rotation, we can always make the line L coincide with the
real axis.

Notation 2.2 (Length). We denote the length of an interval Ij (where length is
defined in the usual way) as l(Ij).

Theorem 2.3 (Initial formulation). Let f(z) be a complex monic polynomial of
degree n ≥ 1. Define C = { z ∈ C : |f(z)| ≤ 2} and let R be the orthogonal
projection of C onto the real axis. Then R is covered by intervals I1, ..., It on the
real line that satisfy

l(I1) + ... + l(It) ≤ 4

Proof. This is clearly true for n = 1, as mentioned above.
For n > 1, we write f(z) as the product of complex factors:

f(z) = (z − c1) · · · (z − cn)

where ck = ak + ibk and z = x + iy ∈ C, and compare this to the real polynomial
p(x) ∈ R[x]:

p(x) = (x− a1) · · · (x− an)

Figure 2. The Pythagorean theorem in the complex plane.

By the Pythagorean theorem, as illustrated in Fig. 2, we have

|x− ak|2 + |y − bk|2 = |z − ck|2

Hence, for all k, we have that every real factor is bounded above by every complex
factor:

|x− ak| ≤ |z − ck|
and applying this to our complex f(z) and real p(x) polynomials,

|p(x)| = |x− a1| · · · |x− an| ≤ |z − c1| · · · |z − cn| = |f(z)| ≤ 2

We consider the set P = {x ∈ R : |p(x)| ≤ 2}. By our choice of C, we know that
its orthogonal projection R ⊂ P. If we can show that P can be covered by intervals
whose length sums to at most 4, then we are done.

We restate the theorem and we show that it is a consequence of Chebyshev’s
theorem:
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Theorem 2.4 (Revised formulation). Let p(x) ∈ R[x] be monic with all roots ∈ R.
Then the set P = {x ∈ R : |p(x)| ≤ 2} can be covered by intervals of total length at
most 4.

Pólya allegedly demonstrates in [2] that this restated theorem is a consequence
of Chebyshev’s Theorem. We’ll have to take his word for it, because my German
isn’t good enough to check and the editor only offers addenda in English.

3. Chebyshev’s Theorem

Theorem 3.1 (Chebyshev’s Theorem). Let p(x) ∈ R[x] be monic with degree n ≥ 1.
Then

max
−1≤x≤1

|p(x)| ≥ 1

2n−1

We omit the proof, in keeping with David Glynn’s presentation; the result has
been thoroughly covered in Junior and Senior Freshman analysis.

Corollary 3.2. Let p(x) ∈ R[x] be monic with degree n ≥ 1. Suppose |p(x)| ≤ 2,∀x ∈ [a, b].
Then b− a ≤ 4.

Proof. Let y = 2
b−a (x− a)− 1. This is a map from [a, b]→ [−1, 1].

Consider q(y) = p( b−a
2 (y + 1) + a). These polynomials have the same maximum

over their respective intervals:

max
−1≤y≤1

|q(y)| = max
a≤x≤b

|p(x)|

and are bounded above by 2, by Chebyshev:

2 ≥ max
−1≤y≤1

|q(y)| = max
a≤x≤b

|p(x)| ≥
(
b− a

2

)n
1

2n−1
= 2

(
b− a

4

)n

Thus, (b− a) ≤ 4. �

We’re creeping closer to the desired result. We now have that if P is a single
interval, then it is of length less than or equal to 4, which is what we’re aiming for.

Question. What if P is several intervals?

For example, given the illustrative polynomial p(x) = x3 − 3x2, the set P is the

union of real intervals, P= [1−
√

3, 1] ∪ [1 +
√

3,≈ 3.20].
We know by continuity of p(x) that P is the union of disjoint closed intervals

Ij for j ≥ 1. Since p(x) = ±2 at each endpoint of an interval, and since p(x) can
only assume any value finitely often, we know that there must be a finite number
of intervals: I1, ..., It.

Therefore, we construct a new monic polynomial p̃(x) ∈ R[x] of degree n ≥ 1 such

that P̃ = {x ∈ R : |p̃(x)| ≤ 2} is an interval, and the length of P̃ ≥ l(I1)+ ...+ l(It).

The corollary proves that this interval P̃ has length at most 4 and is at least as
long as the sum of the lengths of the constituent intervals.

Now we have that the length of P is bounded above by 4, whether it’s a single
interval or a (finite) sum of closed intervals, we can state a few useful facts and
return to our proof of the revised formulation of Pólya’s theorem 2.4.
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4. Two facts about polynomials with real roots

Lemma 4.1. If b is a multiple root of p′(x), then b is also a root of p(x).

Proof. Let b1 < · · · < br be roots of p(x), with multiplicities s1, ..., sr that sum to
n. Then p(x) = (x− bj)

sjh(x) and if sj > 1, p′(x) has it as a root with multiplicity
sj − 1. Also, there is a root of p′(x) between each of the roots b1 and b2, ..., up to
br−1 and br. There roots are all single roots, because

r∑
j=1

(sj − 1) + (r − 1)

counts the roots up to the degree n − 1 of p′(x), thus any multiple roots of p′(x)
can only occur in the roots of p(x). �

Lemma 4.2. p′(x)2 ≥ p(x)p′′(x), ∀x ∈ R.

Proof. This is straightforward computation. We assume x is not a root, to avoid
triviality.

p(x) =

n∑
k=1

p(x)

x− ak

=⇒ p′(x)

p(x)
=

n∑
k=1

1

x− ak

=⇒ p′′(x)p(x)− (p′(x))2

p(x)2
= −

n∑
k=1

1

(x− ak)2
< 0

�

5. Proof of the revised formulation of Pólya’s theorem

Finally we are fully prepared to finish the proof of Thm. 2.4.
We number the finite intervals in the set P = {x ∈ R : |p(x)| ≤ 2} from I1 at

the left to It at the right. Without loss of generality, we assume p(x) = 2 at both
endpoints of P.

Let p(b) = min(p(x) in Ij). This implies p′(b) = 0 and p′′(b) ≥ 0. In the first
case, p′′(b) = 0, b is then a multiple root of p′(x) and hence a root of p(x). In the
second case, p′′(b) > 0, we use Lemma 4.2 and conclude (p′(b)2 ≥ p′′(b)p(b) and
hence it has a root in the interval from b to an endpoint of Ij .

We now construct our polynomial p(x). We number the intervals as before,
I1, ..., It. We assume It has m roots of p(x), m < n, which is justified by our
earlier work. We let b1, ..., bm be roots in It and c1, ..., cm−n be roots in the union
of the remaining intervals, I1 ∪ · · · ∪ It−1. Write p(x) = q(x)r(x) where we define
q(x) = (x−b1) · · · (x−bm) and r(x) = (x−c1) · · · (x−cm−n). We define d to be the
distance between the rightmost interval and the next rightmost interval as shown
below.

We set p1(x) = q(x + d)r(x); it is again monic with degree n. Let P1= {x
∈ R : |p1(x)| ≤ 2}. We will show that ∪t−1

i=1Ii is contained in P1.

If x ∈ ∪t−1
i=1Ii, then |x + d− bi| ≤ |x− bi| because all the bi are in the rightmost

interval It. So |q(x + d)| ≤ |q(x)| =⇒ |p1(x)| ≤ |p(x)| ≤ 2. Therefore the union of
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Figure 3

intervals are contained in P1. Similarly, if x ∈ It, we have |r(x − d)| ≤ |r(x)| =⇒
|p1(x− d)| = |q(x)||r(x− d)| ≤ |p(x)| ≤ 2. Therefore It − d ⊆ P1.

Now we consider merging the interval leftward: from p(x) to p1(x), the intervals
It−1 and It−d merge into a single interval. We infer that we can therefore construct
a polynomial to merge all the intervals together. After a maximum of t − 1 such
repetitions, we have constructed a polynomial p̃(x) representing the single interval

P̃ = {x ∈ R : |p̃(x) ≤ 2|}. As a single interval, we can then apply the result

4 ≥ l(P̃ ) ≥ l(P )

�
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