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CATHAL O CLEIRIGH

1. Cardinality

We denote the size or cardinality of a set M by |M |. For finite sets we simply
count the number of elements - if M has exactly n elements, then M has cardinality
n. Hence, two finite sets M and N have equal cardinality, |M | = |N | if and only
if they contain the same number of elements. But how do we generalise this to
infinite sets? Clearly, if M and N are finite sets with |M | = |N |, there exists a
bijection φ between the two sets. Therefore, we make this our definition for the
general case - not just finite sets.

Definition 1.1. Two arbitrary sets M and N (finite or infinite) are said to be of
equal size or equal cardinality, if and only if there exists a bijection φ from M
onto N .

This notion of equal size is an equivalence relation, so to each equivalence class
of equal-sized sets, we associate a so-called cardinal number. For a finite set with
n elements, we simply associate it with the cardinal number n For infinite sets, it
becomes less intuitive - for the set of natural numbers N, we associate with it the
cardinal number ℵ0 (i.e. |N| = ℵ0). For other infinite sets, some have cardinality
ℵ0 while others do not.

2. Countability

If |M | = ℵ0 for a set M , then we say that M is countable. In other words,
if we can list all of the elements of M as m1,m2,m3, . . . then M is countable, as
clearly there exists a bijection φ between N and M , namely φ(i) = mi, for i ∈ N.
It is easy to find examples of other countable sets by seeing if we can list them as
above. For example, the set of integers Z = {. . . ,−2,−1, 0, 1, 2, . . . } can be written
in a list as such: Z = {0, 1,−1, 2,−2, . . . }. Somewhat suprisingly, we can show in
this way that the rational numbers are also countable.
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Theorem 2.1. The set Q of rational numbers is countable.

Proof. We first list all of the elements of Q+ by following the pattern in the dia-
gram above, and skipping any numbers already encountered. Thus, we have shown
that Q+ is countable. Similar to how we listed the integers above, we begin the
list of elements of Q with 0, then follow the list found for Q+ and insert the
corresponding negatives of these elements directly after each element itself. i.e.
Q = {0, 1,−1, 2,−2, 12 ,−

1
2 , . . . }. As displaying the elements of Q in this way shows

that Q is countable, we are done. �

There is in fact a more elegant way of listing the elements of Q. This nicer way
doesn’t require us to skip over duplicates, as we were forced to in the proof above.
This list is found by observing the binary tree below.
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We can see its recursive rule with ease:

• 1
1 is on top of the tree

• every node i
j has two ”sons”: the left son is i

i+j and the right son is i+j
j

There are three properties of the tree that are easy to prove:

(1) All fractions in the tree are reduced, i.e. if r
s appears in the tree, then r

and s are relatively prime
(2) Every reduced fraction r

s > 0 appears in the tree
(3) Every reduced fraction appears exactly once

The first property can be proved by noting that it is true for the top of the tree 1
1 ,

and by then using induction downward: if r and s are relatively prime, then so are
r and r + s, as well as s and r + s.

The second property can be proved by induction on the sum r+ s. The smallest
value is r + s = 2, which occurs at the top of the tree. If r > s, then r−s

s appears
in the tree by induction (considering the sum of its numerator and denominator),
and we get r

s as its right son. Similarly, if r < s, then r
s−r appears in the tree by

induction also, and has r
s as its left son.

The third property can be proved using a similar argument. As all nodes of the
tree are of the form i

i+j or i+j
j for i, j ∈ N, except for the top of the tree, we have

no nodes being equal to 1 (except for the top of the tree). Hence, if rs appears more
than once, then r 6= s. For each case, r < s, r > s, we argue by induction as before.

Now that we have verified these properties, it is clear to see that every positive
rational occurs exactly once in the tree, so we can list them level-by-level from left
to right. We can then create a list of all of the rational numbers the same way as
before (starting with 0 etc.)

However, one may ask, given r
s , is there an easy way to determine the next

element in the list? The answer is yes. First, we construct another infinite binary
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tree as shown in the first diagram below. We see that, given r
s = x, its right son

is x+ 1, and its left son is x
1+x . Continuing in this manner, we see that if we keep

taking successive right sons, that the k-fold right son of x is x+ k. Likewise, if we
take successive left sons, we see that the k-fold left son of x is x

1+kx . Now, looking

at a rational number r
s = x and its successor f(x) in the tree, as depicted in the

second diagram below, we see that x is the k-fold right son of the left son of some
rational y ≥ 0, while f(x) is the k-fold left son of the right son of the same y.
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As x = y
1+y + k, we see that bxc = k, and that {x} = y

1+y (since 0 < y
1+y < 1).

From this, we obtain f(x) = y+1
1+k(y+1) = 1

bxc+1−{x} . This generates the sequence

of positive rationals found by listing the nodes of the tree level-by-level and left to
right as discussed above.

Next, it is natural to enquire about the cardinality of R. Is |R| = ℵ0? The
answer is no, as we will see below.

Theorem 2.2. The set R of real numbers is not countable.

Proof. Any subset N of a countable set M = {m1,m2, . . . } is either finite or count-
able, as can easily be checked. Therefore, if we can find a subset of R which is not
countable, then R cannot be countable itself. We consider the subset (0, 1] of R.
Suppose H = (0, 1] is countable and let H = {r1, r2, . . . } be a listing of H. We write
rn as its unique infinite decimal expansion without an infinite sequence of zeros at
the end: rn = 0.an1an2 . . . where ani ∈ {0, 1, . . . , 9} for all n and i. For example,
we write 0.5 as 0.49999 . . . . As we can list these elements as H = {r1, r2, . . . }, we
obtain the following array:
r1 = 0.a11a12 . . .
r2 = 0.a21a22 . . .
. . .
. . .
rn = 0.an1an2 . . .
. . .
For every n, let bn be the least element of (1, 2) that is different from ann. Then

b = 0.b1b2 · · · ∈ H so b = rk for some k ∈ N. But bk is different from akk by
definition, so we arrive at a contradiction. Hence, H = (0, 1] is uncountable, which
means R is uncountable itself. �

It can be shown that any open, half-open, or closed interval, both finite and
infinite, has the same cardinality as R which we denote by c. This fact is very
useful, as we will see in the proof of the following theorem.

Theorem 2.3. The set R2 of all ordered pairs of real numbers (the real plane) has
the same size as R.

Proof. We show that the set of all pairs (x, y), 0 < x, y ≤ 1, can be mapped
bijectively onto (0, 1]. The desired result follows directly from this, as there exists
a bijection φ from R from (0, 1] to R by the above fact.

Consider the pair (x, y) with x, y written as their unique infinite decimal expan-
sions as described earlier. For example:
x = 0.3 01 2 007 08 . . .
y = 0.009 2 05 1 0008 . . .
We have separated the digits of x, y into groups, allowing precisely one non-

zero digit per group, with each group ending with that digit. We now define z =
φ(x, y) ∈ (0, 1] by writing down for the infinite decimal expansion of z the first
x-group, then the first y-group, and then the second x-group, and so on. Using our
example, z = 0.30090122050071080008 . . . . To see that this mapping is bijective,
we consider injectivity and surjectivity separately.

It is injective as given any z ∈ (0, 1] such that z = φ(x, y) for some (x, y) with
0 < x, y ≤ 1, we can find the corresponding x, y by identifying each group of digits
in z (as described above) and separating them out one-by-one into the infinite
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decimal expansions for x and y, alternating between them and starting with x.
There is only one way to follow this procedure, which results in unique values for
x and y. Therefore, φ is injective.

It is obviously surjective, as given any z ∈ (0, 1] we can apply the procedure
detailed in the previous paragraph to find a pair (x, y) such that 0 < x, y ≤ 1.

So φ is bijective, and we are done. �

3. Cantor-Bernstein Theorem

We say that the cardinal number m is less than or equal to n, if for sets M and
N with |M | =m, |N | =n, there exists an injection from M into N . The relation
m ≤ n is independent of the sets M and N chosen, due to the bijection definition
of equal cardinality. We would now like to see if m ≤ n, n ≤ m imply m = n. In
fact, this is true, as we will see from the proceeding theorem.

Theorem 3.1 (Cantor-Bernstein). If each of two sets M and N can be mapped
injectively into the other, then there is a bijection from M to N , that is, |M | = |N |.

Proof. Let f be an injection from M into N , and let g be an injection from N into
M . We will partition the union of the two sets M and N , M ∪ N into chains of
elements. Take an arbitrary element m0 ∈M and generate a chain of elements by
applying f , then g, then f again, then g again, and so on. There are four different
types of chain that can occur.

If the chain loops back to an element that it has already ”passed”, it is finite
and the first ”duplicate” in the chain is m0 due to injectivity. This is the first type
of chain - a diagram is shown below.
m0 → n0 → m1 → . . .mk → nk → m0

Otherwise, the chain continues with distinct elements indefinitely. We will fol-
low the chain backwards in this case - we start with m0 and find g−1(m0), then
f−1(g−1(m0)), and so on. We can only do this in the case that m0 is in the image
of g, g−1(m0) is in the image of f , and so on. The three other types of chains are
found in this way.

If the process of following the chain backwards continues indefinitely, we have
the second type of chain, as shown below.
· · · → m0 → n0 → m1 → . . .
If we finish on an element of M that does not lie in the image of g, we have the

third type.
m0 → n0 → m1 → n1 → . . .
If we finish on an element of N that does not lie in the image of f , we have the

fourth type.
n0 → m0 → n1 → m1 → . . .
Every element of M ∪ N must belong to one of these chains, as can easily be

checked. We now define a bijection F from M onto N by F (mi) = ni, and we are
done. �

As a consequence of the Cantor-Bernstein Theorem, we can prove that the set
P(N) of all subsets of N has cardinality c. It suffices to show that |P(N)− {Ø}| =
|(0, 1]| as removing an element of an infinite set leaves its cardinality unchanged.
An injective map from the first set to the second is f(A) =

∑
i∈A

10−i. An injective
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map from the second set to the first set is g(0.b1b2b3 . . . ) = {bi10i : i ∈ N} where
we have used the infinite decimal expansion as described previously.

4. Ordinal Numbers and the Continuum Hypothesis

A set M is ordered by a relation ≺ if ≺ is transitive and either a ≺ b or b ≺ a
for all distinct a, b ∈M .

An ordered set M is well-ordered if each non-empty subset of M has a first
element.

The Well-Ordering Theorem, implied by the Axiom of Choice, states that
every set M can be well-ordered.

Two well-ordered sets M and N are similar if there exists a bijection φ from
M onto N such that for m,n ∈ M , m ≺ n implies φ(m) ≺ φ(n). We denote this
as M ∼ N . Similarity is obviously an equivalence relation - we denote α as the
ordinal number associated with a class of equivalent sets.

For a well-ordered set M , and m ∈ M , we define the initial segment of M
determined by m: Mm = {x ∈ M : x < m}. We define for ordinal numbers α and
β of the respective well-ordered sets M,N : α < β if M is similar to a segment of
N .

Transfinite Induction states that if for each m ∈M , a property P being true for
all elements in the initial segment Mm implies that it is true for m itself, then P is
true for all n ∈M .

It can be proved that for each pair of ordinal numbers α, β, exactly one of the
following relations is true: α < β, α = β, α > β. It can also be proved that every
set of ordinal numbers (ordered according to magnitude) is well-ordered.

The Contiunuum Hypothesis is the statement c = ℵ1, or in other words, that
the next cardinal number after ℵ0 is c.

Theorem 4.1. Let {fα} be a family of pairwise distinct analytic functions on C,
the complex numbers, such that for each z ∈ C the set of values {fα(z)} is at most
countable. If c > ℵ1, then {fα} is countable. If c = ℵ1, then there exists some
family {fα} with this property, that has size c.

Proof. Assume c > ℵ1. We will show that for any family {fα} of size ℵ1 that
there exists some z0 ∈ C such that all ℵ1 values fα(z0) are distinct. If a family of
functions satisfies the hypothesis of the theorem, it must then be countable.

We well-order the family {fα} according to the initial ordinal number ω1 of ℵ1.
(This exists due to the fact that every set of ordinal numbers ordered according to
magnitude is well-ordered - we take the first element in the ordered set of all ordinal
numbers with cardinality ℵ1.) The index set runs through all ordinal numbers α
which are smaller than ω1. We now show that the set of pairs (α, β), α < β < ω1

has size ℵ1. Since any β < ω1 is a countable ordinal, the set of pairs (α, β), α < β
is countable for every fixed β. Taking the union over all ℵ1-many β, we see that
the set of pairs (α, β), α < β has size ℵ1.

Consider for any pair α < β, the set S(α, β) = {z ∈ C : fα(z) = fβ(z)}. We
will now show that each set S(α, β) is countable. Consider the disks Ck of radius
k = 1, 2, 3, . . . around the origin in the complex plane. By a result on analytic
functions, if fα and fβ agree on infinitely many points in one of the Ck, then fα
and fβ are identical. Consequently, fα and fβ agree on only finitely many points in
each Ck, so on at most countably many points altogether. Setting S as the union
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of all S(α, β) for which α < β, we find that S has size ℵ1, as each set S(α, β) is
countable. As C has size c - there is clearly a bijection from R2 to C - and c > ℵ1
by assumption, there exists a complex number z0 not in S with all ℵ1 values fα(z0)
distinct.

Now assume that c = ℵ1. Consider the set D of complex numbers p + iq with
rational real and imaginary part. This is clearly countable, as it is a countable
union of countable sets. Note that every open disk in the complex plane contains
some point of D. Let {zα : 0 ≤ α < ω1} be a well-ordering of C. We will now
construct a family of ℵ1-many distinct anaytic funtions - {fβ : 0 ≤ β < ω1} - such
that fβ(zα) ∈ D whenever α < β. Any such family satisfies the hypothesis of the
theorem.

Each complex number z has some index, say z = zα. For all β > α, the values
{fβ(zα)} lie in the countable set D. Since α is a countable ordinal number, the
functions fβ with β ≤ α will contribute at most countably further values fβ(zα), so
that the set of all values {fβ(zα)} is also at most countable. So if we can construct
such a family {fβ}, the second part of the theorem is proved.

We construct {fβ} by transfinite induction. We take f0 constant, although this
would work for any analytic function. Suppose fβ has already been constructed for
all β < γ. Since γ is a countable ordinal, we may reorder {fβ : 0 ≤ β < γ} into
a sequence g1, g2, g3 . . . . The same reordering of {zα : 0 ≤< γ} gives a sequence
ω1, ω2, ω3, . . . . We now construct a function fγ satisfying for each n the conditions
fγ(ωn) ∈ D and fγ(ωn) 6= gn(ωn). The second condition ensures that all functions
fγ(0 ≤ γ < ω1) are distinct, and the first condition is just the same as fβ(zα) ∈ D
whenever α < β from above. Note that the condition fγ(ωn) 6= gn(ωn) is another
diagonalisation argument.

To construct fγ , we write fγ(z) = ε0 + ε1(z−ω1) + ε2(z−ω1)(z−ω2) + . . . . If γ
is a finite ordinal, then fγ is a polynomial and hence analytic, and we can choose
numbers εi such that both the conditions are satsified. Now suppose γ is a countable

ordinal, then fγ(z) =
∞∑
n=0

εn(z − ω1) . . . (z − ωn). The values of εm(m ≥ n) have

no influence on the value fγ(ωn), hence we may choose the εn step by step. If the
sequence (εn) converges to 0 sufficiently fast, then the expression for fγ(z) defines
an analytic function. Finally, as every open disk in the complex plane contains
some point of D, i.e. D is dense in C we may choose this sequence so that fγ meets
the conditions above, and the proof is finally complete. �
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