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1. Introduction

In this report, we refer to R as a ring with multiplicative identity e. The proof
presented by Daniel Matthews blends together an interesting mix of ingredients,
group theory, linear algebra and complex numbers to arrive at a rather surprising
result. As Daniel pointed out, what makes this result so unexpected is that it
establishes a connection between the number of elements in a division ring and
its multiplication being commutative. Originally proven by Joseph Wedderburn
in 1905, it is often referred to as Wedderburn’s theorem or Wedderburn’s little
theorem.

2. Wedderburn’s Theorem

Wedderburn’s theorem states that every finite division ring is a field. This is
equivalent to the statement that every finite division ring is commutative, a point
made clear by the following presentation of the well known definitions.

Definition 2.1. A ring is a set R equipped with the binary operations + and ·
such that (R,+) is an abelian group and (R, ·) is a monoid where multiplication is
distributive with respect to addition.

Definition 2.2. A division ring is a non-trivial ring R where every element has a
multiplicative inverse.

Definition 2.3. A field is a non-trivial division ring R where multiplication is
required to be commutative.

Before proceeding with the proof, we should recall some preliminary group the-
ory. Suppose R is a division ring and r ∈ R.

Definition 2.4. The centraliser of r is the set Cr(R) = {x ∈ R | xr = rx}.

Definition 2.5. The centre of R is the set Z(R) = {x ∈ R | xs = sx, ∀s ∈ R}.

Suppose R is a finite division ring, we immediately obtain from these definitions
that Z(R) =

⋂
r∈R Cr(R) and it can be easily verified that Cr(R) and Z(R) are

sub-division rings. Since R is finite and all elements of Z(R) commute we can say
that Z(R) is a field with |Z(R)| = q for some q ∈ N.
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Theorem 2.6 (Wedderburn’s Theorem). Let R be a finite division ring, then R is
commutative.

Proof. Let us assume that R is not commutative, this means there exists some
r ∈ R such that Cr(R) 6= R. We can consider R and Cr(R) as vector spaces over
Z(R). If n and nr are the dimensions of these vector spaces respectively, then we
find that |R| = qn, |Cr(R)| = qnr and from our assumption n > nr.

Define the equivalence relation ∼ on R∗ = R \ {0}. Let r1, r2 ∈ R∗, then

r1 ∼ r2 ⇐⇒ r1 = x−1r2x for some x ∈ R∗

It can be verified that this is an equivalence relation, thus we have the equivalence
class Ar = {x−1rx | x ∈ R∗} of elements in R∗ equivalent to r. Define the surjective
map qr : R∗ → Ar sending x 7→ x−1rx. Suppose that for x, y ∈ R∗, qr(x) = qr(y).

x−1rx = y−1ry ⇐⇒ (yx−1)r = r(yx−1)

⇐⇒ yx−1 ∈ C∗r (R) = Cr(R) \ {0}
⇐⇒ y ∈ C∗r (R) · x = {zx | z ∈ C∗r (R)}

∴ qr(x) = qr(y) ⇐⇒ y ∈ C∗r (R) · x

Since Cr(R) is a sub-division ring, the multiplicative identity e ∈ C∗r (R), so we
know that y = ey ∈ C∗r (R) · y which means both cosets C∗r (R) · x, C∗r (R) · y share
an element. Therefore C∗r (R) · x = C∗r (R) · y and so we obtain:

qr(x) = qr(y) ⇐⇒ C∗r (R) · x = C∗r (R) · y

Then |Ar| is the index of C∗r (R), so by Lagrange’s theorem |R∗| = |C∗r (R)| · |Ar|
and we obtain

|Ar| =
|R∗|
|C∗r (R)|

=
qn − 1

qnr − 1
∈ Z

Implying that (qnr − 1) | (qn − 1)

Claim that this implies nr|n. Lets assume the contrary, then n = anr + b for
0 < b < nr.

(qnr − 1) | (qanr+b − 1) =⇒ (qnr − 1) | (qanr+b − 1)

=⇒ (qnr − 1) | ((qanr+b − 1)− (qnr − 1))

=⇒ (qnr − 1) | qnr (q(a−1)nr+b − 1) and note that (qnr − 1) - qnr

=⇒ (qnr − 1) | qnr (q(a−2)nr+b − 1) by the same technique

=⇒ . . .

=⇒ (qnr − 1) | (qb − 1)

⇒⇐ since b < nr

Therefore nr|n
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Let s ∈ Z∗(R), then As = {x−1sx | x ∈ R∗} = {s} and |As| = 1. Now suppose
|As| = 1, its single element must be s as s = ese = (e)−1se is always satisfied.
Then we can say that |As| = 1 ⇐⇒ s ∈ Z∗(R). Since we’ve assumed that R is
not commutative, there are equivalence classes Ar such that |Ar| > 1.

Let {Ak}mk=1 be the collection of all such non-trivial equivalence classes. Recall
that R can be partitioned by its equivalence classes. In this way we obtain the class
formula.

|R∗| = |Z∗(R)|+
m∑
k=1

|[Ak]| =⇒ qn − 1 = q − 1 +

m∑
k=1

qn − 1

qnrk − 1

Now we turn our attention to matters of polynomials and complex numbers.
Recall that the roots of the equation xn − 1 = 0 are the n-th roots of unity
ζmn = exp( 2πim

n ). Let λ be some root of unity. Some of these roots satisy λd = 1

for some d < n, take for example λ = −1 =⇒ λ2 = 1.

Suppose for such a root λ we choose the smallest such d satisfying this equation,
by definition this is the order of λ in the group of the roots of unity of xn − 1.
Recall that the order of every element of a group divides the order of the group by
Lagranges theorem, which implies d|n.
Now suppose for d < n that d|n. This means that n = kd for some integer k < n.
Let us consider ζkn = exp( 2πik

n ).

(ζkn)d = exp(
2πikd

n
)

= exp(
2πikd

kd
)

= exp(2πi)

= 1 by Euler’s identity.

This means there exists λ such that λd = 1 and thus

∃λ, λd = 1 ⇐⇒ d|n (1)

We define the n-th cyclotomic polynomial

Φd(x) =
∏
λd=1

(x− λ)

Since every root of unity has some order d, (1) implies that

xn − 1 =
∏
d|n

Φd(x) (2)

Claim that Φd(x) ∈ Z[x] with constant term ±1. Let us prove this claim by induc-
tion, first we consider the base case.

Suppose d = 1, then Φ1(x) = x− 1 since λ = 1 is the only root. The conditions
are trivially satisfied and thus the base case is true.
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Suppose the claim is true for all k < d, so Φk(x) ∈ Z[x] with constant term ±1
for all k < d. Then from (2) we know that

xd − 1 = Φd(x)
∏
b|d
b6=d

Φb(x) = (

l∑
i=0

aix
i)(

d−l∑
i=0

bix
i)

=

d∑
i=0

i∑
k=0

akbk−ix
i

By assumption all bi ∈ Z and b0 = ±1. Now we will compare the coefficients on
both sides of the above equation, and briefly employ an inductive argument.

For the i = 0 term, we have a0b0 = −1, b0 = ±1 =⇒ a0 = ∓1
For the i = 1 term, we have a0b1 + a1b0 = 0. Since a0, b0, b1 ∈ Z =⇒ a1 ∈ Z
For the i-th term where i < d, we have a0bi + a1bi−1 + · · · + ai−1b1 + aib0 = 0.
Since by assumption a0, . . . , ai−1, b0, . . . , bi ∈ Z =⇒ ai ∈ Z
Finally for the i = d term, we have adb0 + (a0bd+a1bd−1 + · · ·+ad−1b1) = 1. Since
a0, . . . , ad−1, b0, . . . , bd ∈ Z =⇒ ad ∈ Z
Therefore all ai, bi ∈ Z for all 0 ≤ i ≤ d and thus Φk(x) ∈ Z[x] with constant term
±1 for all k ∈ N by induction

Let n1, . . . , nm be all of the nr such that nr|n described above and consider the
factorisation for any 0 ≤ k ≤ m

xn − 1 = (xnk − 1)Φn(x)
∏
d|n
d-nk

d6=n

Φd(x)

from which we obtain that for all k

Φn(x)|xn − 1 and Φn(x)| x
n − 1

xnk − 1

Therefore, by the class equation

Φn(q)|(q − 1) (3)

We claim that this is a contradiction.

Φn(z) =
∏
λd=1

(z − λ)

=⇒ |Φn(z)| =
∏
λd=1

|(z − λ)| (4)
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Let λ = a + ib be some root of order n. We know that n > 1 since R 6= Z(R) by
our assumption, so λ 6= 1.

|q − λ|2 = |q − a− ib|2

= (q − a)2 + b2

= q2 − 2aq + a2 + b2

= q2 − 2aq + 1 since λ2 = a2 + b2 = 1

> q2 − 2q + 1 since λ 6= 1 =⇒ Re{λ} = a < 1

= (q − 1)2

Therefore for all roots λ of order n

|q − λ| > q − 1

=⇒
∏
λd=1

|(q − λ)| > q − 1

=⇒ |Φn(q)| > q − 1 by (4)

⇒⇐ by (3)

Finally, our assumption has lead to a contradiction, so we conclude that R is com-
mutative and thus a field. This proves the theorem. �

3. Additional comments

While not relevant to the above proof, I came across some interesting lore sur-
rounding this theorem. Shortly after Wedderburn’s first proof, Leonard Eugene
Dickson provided an alternative. It was later noted that Wedderburn’s original
proof contained a gap and so there is some disagreement as to who should be cred-
ited with the proof.

On a more unusual note, among many alternative proofs is the one given by
Theodore Kaczynski, or more commonly referred to as the Unabomber. Known
for being a mathematicial prodigy, anarchist author and a terrorist, his alternative
proof to this theorem was his first published work.
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