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1. INTRODUCTION

The Borromean rings (pictured below) is a link comprised of three circles which
the property that any two circles are pairwise disjoint, yet the link itself is not triv-
ial. The belong to a class of links known as Brunnian links, that is, k-component
links with that property that any subcollection of k− 1 of the componets is trivial.
This report will provide a proof that it is in fact impossible to construct the Bor-
romean rings with perfect circles, as outlined in Alden Mathieu’s talk. We begin
with some formalitites of the theory of knots and links, then develop some results
about circles in R3, and finally finish with the proof. In the process, we shall also
prove that the Tait #18 link cannot be constructed with perfect circles and that
is not equivalent to the Borromean rings, despite also being a three component
Brunnian link.

(a) The Borromean Rings (b) Tait #18

2. KNOT AND LINK PRELIMINARIES

Definition 2.1. A knot K is a continuous embedding K : S1 → R3

Definition 2.2. A link L (with n components) is a collection L = {K1, . . . ,Kn}
where K1, . . . ,Kn are knots with disjoint images.

Remark 2.3. A knot is a link with 1 component

Example 2.4. The Borromean Rings and Tait #18 are both links with 3 compo-
nents.
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An important concept in knot theory is that of equivalence. We regard knots as
topological objects, and so two knots are equivalent if their images are topologically
equivalent. In practice, we shall use the diagrams of two knots to determine whether
or not they are equivalent. Similarly, two links are equivalent if the respective
(disjoint) union of the images of their components are topologically equivalent.

Definition 2.5. The diagram of a knot K is an illustration of the projection
K(S1) → R2 in which the information on whether a crossing is an under-crossing
or an over-crossing is preserved

Figure 2. The Trefoil knot and it’s diagram

This association of a knot to it’s diagram may seem ambiguous as we may get a
different diagram depending on what projection we take. This is taken care of by
the concept of “Reidemeister moves”. The following theorem will provide a method
to determining if two knots are equivalent by allowing a series of Reidemeister moves
for the knot diagrams.

Theorem 2.6 (Reidemeister). Two knots are equivalent iff their diagrams differ
by continous deformation and a finite series of Reidemeister moves. That is, moves
of the form:

(a) Type I (b) Type II (c) Type III

Figure 3. The Reidemeister Moves

There are quite a number of invariants utilised in knot theory. These are certain
values associated to knots that are invariant for equivalent knots. These values,
while they cannot prove if two certain knots are equivalent (although they may
strongly suggest that they are), are useful in determining whether two knots are
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not equivalent. A few examples of these are crossing number of a knot diagram,
hyperbolic volume of the complement of the image of a knot, and Fox n-colourings
of a knot diagram. We will be utilising the latter in this report.

Definition 2.7. A Fox n-colouring of a knot diagram is an association, or ”colour-
ing”, of the arcs in the diagram with elements in Z/nZ such that at any crossing,
the element associated to the arc on the over-crossing a is equal to the average of
the associated elements on the two arcs on the under-crossing, b and c. In other
words, 2a ≡ b + c (mod n)

Proposition 2.8. The number of Fox n-colourings of a knot is invariant for equiv-
alent knots.

Proof. It is enough to prove that the number of Fox n-colourings is invariant for
the Reidemeister moves.

(I) We colour each arc on the left diagram a, b ∈ Z/nZ as shown below. Due
to the crossing relation, we have 2a ≡ a + b =⇒ a ≡ b. Therefore for
the left diagram, we have n choices for the colouring, namely the n colours,
and this coincides with the right diagram as there is only one arc.

(II) We colour the four arcs on the left diagram a, b, c, d ∈ Z/nZ as shown below.
For the top crossing, we have that 2a ≡ b + c =⇒ c ≡ 2a − b and by the
bottom crossing, we have that 2a ≡ c+d ≡ 2a−b+d =⇒ b ≡ d. Therefore
all Fox n-colourings for the left diagram are completely determined by the
choices for a and b, which coincides with the number of colourings for the
right diagram as we have two arcs with no crossings so the choice of colour
for each arc is independent of each other.
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(III) We colour the six arcs on the left diagram a, b, c, d, e, f ∈ Z/nZ as shown
below. The three crossings in the diagram give relations:

2c ≡ a + d =⇒ d ≡ 2c− a

2c ≡ b + f =⇒ f ≡ 2c− b

2d ≡ e + f =⇒ e ≡ 2d− f ≡ 2(2c− a)− (2c− b) ≡ 2c− 2a + b

Therefore all colourings are determined by the choices for a, b and c for the
left diagram.

We colour the six arcs on the right diagram g, h, i, j, k, l ∈ Z/nZ as shown
below. The three crossings in the diagram give relations:

2g ≡ i + h =⇒ i ≡ 2g − h

2j ≡ g + l =⇒ l ≡ 2j − g

2j ≡ k + i =⇒ k ≡ 2j − i ≡ 2j − (2g − h) ≡ 2j + 2g + h

Therefore all colourings are determined by the choices for g, h and j for the
right diagram. This coincides with the number of colourings for the left
diagram as required.

�

3. CIRCLE LINKS

We are concerned with constrcuting the Borromean rings using perfect circles
and so we develop a few results regarding circles embedded in R3

Definition 3.1. Let C be a circle in R3. We define ∆(C) as the disk spanned by
C.

Definition 3.2. Let C1, C2 be circles in R3. C1 and C2 are linked if C1∩∆(C2) =
{x1} for some x0 ∈ R3. In other words, two circles are linked if one of the circles
intersects the disk spanned by the other at exactly one point.
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Remark 3.3. Let C1, C2 be two disjoint circles in R3 that do not lie in the same
plane. Let H(C1) and H(C2) denote the planes that contain C1 and C2 respectively
and define L(C1, C2) := H(C1)∩H(C2), the line of intersection of C1 and C2. Now
suppose C1 and C2 are linked. Then C1 ∩∆(C2) = {x1} and C2 ∩∆(C1) = {x2}
and we have x1 6= x2. Indeed if x1 = x2, then we would have x1 ∈ C1 ∩ ∆(C2)
and x1 ∈ C2 ∩ ∆(C1) =⇒ x1 ∈ C1 ∩ C2 which contradicts the fact that C1 and
C2 are disjoint. So x1 6= x2 and we find that the line segment joining x1 and x2

is contained in L(C1, C2) and in particular, L(C1, C2)∩C1 ∩C2 consists of exactly
four points which ”alternate” between points of C1 and C2 (see picture below).
This alternating property characterises linked circles.

Definition 3.4. Let C be a circle in R3 with radius r and centre c. We define the
spherical dome D(C) := {(x, hC(x)) : x ∈ ∆(C)} ⊂ R3 ×R where hC : ∆(C)→ R3

is defined such that hC(x) =
√
r2 − |x− c|2

Proposition 3.5. Let C1, C2 be disjoint circles in R3 that are not linked, then
D(C1) ∩D(C2) = ∅

Proof. Let C1, C2 be circles in R3 and suppose D(C1)∩D(C2) 6= ∅. Then ∃(x0, t0) ∈
D(C1) ∩ D(C2) ⊂ R3 × R. Now, (x0, t0) ∈ D(C1) =⇒ x0 ∈ ∆(C1). Similarly
x0 ∈ ∆(C2) and we have x0 ∈ ∆(C1)∩∆(C2) and x0 ∈ L(C1, C2). Now we consider
the functions hC1

and hC2
restricted to ∆(C1) ∩ L(C1, C2) and ∆(C2) ∩ L(C1, C2)

respectively. Under this restriction, hC1 and hC2 define perfect half-circles. These
half-circles must intersect as x0 ∈ ∆(C1) ∩ ∆(C2) ∩ L(C1, C2) and therefore we
have the alternating property of the end points of D(C1)∩L(C1, C2) and D(C2)∩
L(C1, C2) (see picture below). Moreover we have this alternating property for the
circles C1 and C2 and so they must be linked. The result follows. �

We combine these concepts to prove the following result which will be used in
the proof that the Borromean rings do not exist.

Proposition 3.6. If a link consists of disjoint perfect circles that are pairwise not
linked, then the link is trivial.

Proof. We may assume without loss of generality that each of the circles lie in
distinct planes as we may slightly move each circle to make it so. By Proposition 3.5,
we have that the spherical domes of the circles are pairwise disjoint. Indentifying



6 DANIEL MATTHEWS

(a) We have the alternating property iff the half-
circles intersect

R3 with R3 × {0} ⊂ R3 × R, which contains the sphercial domes, we construct a
“movie” R3 × {t} with time co-ordinate t. We can see from the picture below that
starting at R3×{0} and increasing the time co-ordinate, we have a movie in which
we see a circle that continuously shrinks to a point and then dissappears at some
point in time.

Note that as the circle shrinks in the movie, the centre of the circle and the plane
that the circle lies in remains the same. Moreover, the circles remain disjoint
since the spherical domes are pairwise disjoint by Proposition 3.5, hence the circles
remain pairwise not linked throughout the movie. At some time t, we will have that
each circle is so small that it does not intersect a plane in which another circle lies
which implies the disk spanned by this circle does not intersect any plane in which
another circle lies and this will remain the case for all later times in the movie. We
conclude that the movie ends with all circles shrunk to the extent that they have
disjoint spanning disks. This means the circles are completely seperate and so the
link is trivial. �
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4. THE BORROMEAN RINGS DO NOT EXIST

Theorem 4.1. Neither the Borromean Rings nor Tait #18 may be constructed
from three perfect circles.

Proof. Let us consider Fox n-colourings for the Borromean rings. Colouring the six
arcs a, b, c, d, e, f ∈ Z/nZ as shown in the diagram below, we have the following
relations from the six crossings:

2a ≡ b + d =⇒ d ≡ 2a− b

2b ≡ c + e =⇒ e ≡ 2b− c

2c ≡ a + f =⇒ f ≡ 2c− a

2d ≡ e + c =⇒ 2(2a− b) ≡ (2b− c) + c =⇒ 4a− 2b ≡ 2b =⇒ 4a ≡ 4b

2e ≡ f + a =⇒ 2(2b− c) ≡ (2c− a) + a =⇒ 4b− 2c ≡ 2c =⇒ 4b ≡ 4c

2f ≡ d + b =⇒ 2(2c− a) ≡ (2a− b) + b =⇒ 4c− 2a ≡ 2a =⇒ 4c ≡ 4a

So we have the relation 4a ≡ 4b ≡ 4c but mod 5 this implies a ≡ b ≡ c and so
the Borromean rings only has the 3 trivial Fox 5-colourings, however, the trivial
3-component link has 53 = 125 Fox 5 colourings, hence the Borromean rings are
not trivial.

Now let us consider Fox n-colourings for Tait #18. Colouring the twelve arcs
a, b, c, d, e, f, g, h, i, j, k, l ∈ Z/nZ as shown in the diagram below, we have the fol-
lowing relations from the twelve crossings (I omit some tedious calculations):

g ≡ 2a− f, h ≡ 2b− a, i ≡ 2c− b, j ≡ 2d− c, k ≡ 2e− d, l ≡ 2f − e

4(a− f) ≡ b− e, 4(b− a) ≡ c− f, 4(c− b) ≡ d− a

4(d− c) ≡ e− b, 4(e− d) ≡ f − c, 4(f − e) ≡ a− d
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Now mod 5, the latter six equivalences simplify to:

f − a ≡ b− e, a− b ≡ c− f, b− c ≡ d− a

c− d ≡ e− b, d− e ≡ f − c, e− f ≡ a− d

Which gives a ≡ c ≡ e and b ≡ d ≡ f so we have that the Fox 5-colouring depends
only on the choices of colour for a and b and so we have 52 = 25 Fox 5-colourings
for Tait #18 and therefore Tait #18 is also not trivial.

Both the Borromean rings and Tait #18 are not trivial, so by Proposition 3.6
we have that neither consists of disjoint perfect circles. �

In the proof of this theorem we have also proved that the Borromean rings and
Tait #18 are not equivalent as they have a different number of Fox 5-colourings.
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