
THE LAW OF QUADRATIC RECIPROCITY

RONAN O’GORMAN

1. Introduction

Definition 1.1 (Quadratic residue). Let a, b ∈ Z. We say that a is a quadratic
residue modulo b iff a is co-prime to b and there exists some n ∈ Z such that a ≡ n2
(mod b).

In this note, we discuss some aspects of the theory of these quadratic residues,
and present two proofs of a delightful result known as the Law of Quadratic Reci-
procity. This is one of the most-loved (and most-proved) results in mathematics -
in 2000 Franz Lemmermeyer counted fully 196 distinct published proofs. The result
is most commonly stated as follows:

Theorem 1.2 (Law of Quadratic Reciprocity). Let p and q be odd primes. Then

(
p

q
)(
q

p
) = (−1)

p−1
2

q−1
2

where (p
q ) denotes the Legendre symbol:

Definition 1.3 (Legendre symbol). For any odd prime p, and a ∈ Z, define

(
a

p
) =


0 a ≡ 0 (mod p)

1 (a, p) = 1, a ≡ n2 (mod p) for some n ∈ Z
−1 otherwise

This law was conjectured by Euler and (as the notation may suggest) Legendre,
but the first complete proof is attributed to Gauss in 1801. He alone produced eight
different proofs, and Ferdinand Eisenstein followed up soon after with another five
(one of which is presented here). The list of proofs has been growing ever since,
and generalizing the statement remains a central problem in modern number theory
which has led to the development of vast swathes of new mathematics.

Here, we follow Flynn-Conolly’s presentation of one of Eisenstein’s more elegant
proofs, and outline an additional proof from [1, Ch. 5]. The latter is based on
Gauss’s sixth proof and makes use of concepts which are central to the further
development of the theory.

2. Euler’s criterion

We first establish some basic facts about quadratic residues, including a neat
test for quadratic reciprocity. In what follows, let p be an odd prime, Zp denote
the field of integers modulo p, and Z∗

p = Zp \ {0} the corresponding multiplicative
group.
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Lemma 2.1. The quadratic residues modulo p are precisely{
12, 22, · · · ,

(
p− 1

2

)2
}
.

Proof. There can certainly be no quadratic residues other than these, since for any
a ∈ Z, a2 ≡ (p − a)2 (mod p). To see that all of them are different, observe that
for any i, j ∈

{
1, 2, · · · , p−1

2

}
,

i2 ≡ j2 (mod p) =⇒ p | i2 − j2

=⇒ p | (i+ j)(i− j)

so i 6= j implies p | (i+ j), which is impossible since both are less than p−1
2 . �

Next, recall the following result from elementary group theory:

Lemma 2.2 (Fermat’s little theorem). For any prime p, and any a ∈ Z coprime
to p,

ap−1 ≡ 1 (mod p).

Proof. Observe that since Z∗
p is a group under multiplication, the map

x→ ax

is bijective on this group, so it acts as a permutation of the elements 1, · · · , p − 1
modulo p. Hence

(a)(2a)(3a) · · · ((p− 1)a) ≡ (1)(2) · · · (p− 1) (mod p))

and we can divide both sides by (p− 1)! to get the result.
Alternatively, this can be deduced immediately from Lagrange’s theorem applied

to the multiplicative group Z∗
p. �

From this lemma, we see that every a ∈ Z∗
p is a root of the polynomial xp−1− 1.

If p is an odd prime, we can factorize this polynomial to get (x
p−1
2 + 1)(x

p−1
2 − 1).

Since Zp is a field (and more specifically in this case an integral domain), each of

these polynomials can have at most p−1
2 roots, so every element a ∈ Z∗

p is a root of
exactly one of them.

Suppose a is a quadratic residue modulo some prime p (say a ≡ n2 (mod p)).

Then a
p−1
2 = np−1 = 1 by Fermat’s little theorem. Therefore every quadratic

residue is a root of x
p−1
2 − 1. By lemma 2.1, there are p−1

2 quadratic residues, so

we see that the quadratic residues modulo p are precicely the roots of x
p−1
2 − 1,

and the quadratic nonresidues modulo p are the roots of x
p−1
2 + 1. Comparing this

to the definition of the Legendre symbol, we immediately get the following:

Theorem 2.3 (Euler’s Criterion). For any odd prime p, and any a ∈ Z,

(
a

p
) = a

p−1
2 .

From this it easily follows that the Legendre symbol is multiplicative; i.e. for
any a, b ∈ Z and odd prime p, we have

(
a

p
)(
b

p
) = a

p−1
2 b

p−1
2 = (ab)

p−1
2 = (

ab

p
).



THE LAW OF QUADRATIC RECIPROCITY 3

3. The Lemma of Gauss

Euler’s criterion and its immediate corollary give a simple way to test whether
an integer is a quadratic residue modulo some prime p - namely, by first writing the
number as a product of primes and −1, and then computing the Legendre symbol
for each of the factors. In order to characterize quadratic residues more generally,
then, it is enough to understand (−1

p ), ( 2
p ) and ( q

p ) for odd primes q, p (the case

p = 2 will be left as an exercise for the enthusiastic reader).
The first of these is easy. Since p−1

2 is even if and only if p ≡ 1 (mod 4), then
we have by Euler’s criterion that

(
−1

p
) = (−1)

p−1
2 =

{
1 p ≡ 1 (mod 4)

−1 p ≡ −1 (mod 4).

To deal with the other two, we will need some more machinery:

Lemma 3.1 (Lemma of Gauss). Let p be an odd prime and a be co-prime to
p. Consider the set

{
a, 2a, · · · , p−1

2 a
}

reduced modulo p to the residue system of

smallest absolute value, i.e. ia ≡ ri with −p−1
2 ≤ ri ≤

p−1
2 for each i = 1, · · · , p−1

2 .
Let S denote the set {ri : ri < 0}, and s = #S. Then

(
a

p
) = (−1)s.

Proof. First, re-label the ri so that u1, · · · , us are in S and vs+1, · · · , v p−1
2

are not in

S. The key here is to realize that {−u1, · · · ,−us, vs+1, · · · v p−1
2
} = {1, 2, · · · , p−1

2 }.
To see this, first observe that, as in 2.1, the map x → ax is a bijection on the

group Z∗
p, so the elements ri, i = 1, · · · , p−1

2 are all distinct. Then, if ui = ka and
vj = la, then −ui ≡ vj (mod p) for any i, j implies p | ui + vi, so p | (k+ l)a. Since
a and p are co-prime, this implies p | k + l which is impossible since both are less
than or equal to p−1

2 .
Once we have this, the rest follows easily, since

p− 1

2
! ≡ (−1)s

s∏
i=1

ui

p−1
2∏

j=s+1

vj (mod p)

≡ (−1)s

p−1
2∏

i=1

ia (mod p)

≡ (−1)sa
p−1
2
p− 1

2
! (mod p)

(applying Euler’s criterion)

≡ (−1)s(
a

p
)
p− 1

2
! (mod p)

and we can divide across by (−1)s p−1
2 ! to get the result. �

This result is important in its own right - it is the main ingredient in many proofs
of the reciprocity law (including the first one presented here). More immediately
for us, however, it makes short work of the term ( 2

p ). Setting a = 2 in the lemma,
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we can easily see that

s = #

{
i :
p− 1

2
< 2i ≤ p− 1

}
= #

{
i :
p− 1

4
< i ≤ p− 1

2

}
=

⌈
p− 1

4

⌉
.

Observe that

p = 8x+ n =⇒ p− 1

4
= 2a+

n− 1

2

so
⌈
p−1
4

⌉
is even iff p = ±1 (mod 8), and we get

(
2

p
) =

{
1 p = ±1 (mod 8)

−1 p = ±3 (mod 8).

4. First proof

We can now finally present our first proof of the reciprocity law. This proof is
based on Gauss’s third, though the precise formulation is due to Ferdinand Eisen-
stein, and is a very clever application of the Lemma of Gauss. We restate the
theorem for reference:

Theorem (Law of Quadratic Reciprocity). Let p and q be odd primes. Then

(
p

q
)(
q

p
) = (−1)

p−1
2

q−1
2 .

Proof. The idea is to use of the Lemma of Gauss to reduce the problem to counting
points in a lattice.

Consider the set
{
a, 2a, · · · , p−1

2 a
}

reduced modulo p to the residue system of
smallest absolute value, as in the Lemma of Gauss. If iq reduces to ri in this system,
then there is a unique integer j such that iq − jp = ri. Necessarily, 0 < j < q

2 . In

other words, for any i ∈ N, there exists some j, 0 < j < q
2 with −p

2 < iq − jp < 0
iff iq reduces to ri < 0, and such a j is always unique. Hence, by the Lemma of
Gauss, ( q

p ) = (−1)s, where s is the number of points (i, j) satisfying

0 < pj − qi < p

2
, with 0 < i <

q

2
, 0 < j <

p

2
.

Similarly, (p
q ) = (−1)t, where t is the number of points (i, j) satisfying

0 < qi− pj < q

2
, with 0 < i <

q

2
, 0 < j <

p

2
.

We represent the points {(i, j) ∈ Z × Z : 0 < i < q
2 , 0 < j < p

2} in a lattice
L, and superimpose the parallel lines qi − pj = q

2 , qi − pj = 0, qi − pj = −p
2 on

this lattice. Then s is the number of lattice points between the upper and middle
diagonals, and t the number of points between the middle and lower diagonals (see
figure 1), so the number of points between the upper and lower diagonals is s+ t.

Label the outer regions above and below the diagonals B and R (colored blue
and red in the figure), and let |B| and |R| respectively denote the number of lattice
points they contain. We now make two observations about this lattice:

(1) There are no lattice points on any of the diagonal lines.

There are no points on the center diagonal since if qi = pj then i = pj
q

which can’t be an integer since both p and j are co-prime to q. Also, if
i and j are integers then qi − pj is also an integer, but p

2 and q
2 are not

integers, so can be no points on the upper or lower diagonals.
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Figure 1. Example with p = 11, q = 13.

(2) |B|+ |R| is even.
To see this, let φ : L→ L; (x, y) 7→

(
p+1
2 − x,

q+1
2 − y

)
. One can easily

verify that φ is an involution which maps R to B and B to R, so we conclude
that R and B contain the same number of elements.

Then, since the total number of points in the lattice is p−1
2

q−1
2 = s+t+ |B|+ |R|,

we see that p−1
2

q−1
2 and s+ t have the same parity. Hence

(
p

q
)(
q

p
) = (−1)s+t = (−1)

p−1
2

q−1
2 .

�

5. Second proof

We now briefly outline an alternative proof of the result, which is based on
Gauss’s sixth. This proof deduces the result from the properties of so-called ”Gauss
Sums” in finite fields. Gauss Sums are very important tools used throughout num-
ber theory, and the proof here can be taken as a starting point for results much
more general than the reciprocity law.

We will need some facts about finite fields, which we recall here without proof.
In what follows, let p and q be distinct odd primes and F = Fqp−1 denote the field
with qp−1 elements. For any a ∈ F, n ∈ Z, define

n · q = a+ · · ·+ a︸ ︷︷ ︸
n times

.

(1) F has characteristic q - i.e., for any a ∈ F, q · a = 0.
In particular, for for any b, c ∈ F,

(c+ b)q =

q∑
i=0

(
q

i

)
· bibc−i = bq + cq

since all binomial co-efficients
(
q
i

)
with i 6∈ {0, q} are multiples of q.
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(2) The multiplicative group F∗ of F is cyclic of order qp−1 − 1.
We know that p divides qp−1 − 1 by Fermat’s Little theorem, so using

this we can find an element ζ ∈ F∗ of order p.

We can now proceed with the proof:

Proof. Let F, p, q, ζ be as above. Consider the ”Gauss Sum”

G :=

p−1∑
i=1

(
i

p
)ζi.

The result will be a simple corollary of the following lemma:

Lemma 5.1.
G2 = (−1)

p−1
2 p.

Proof. By multiplicity of the Legendre symbol, we have

G2 =

p−1∑
i=1

p−1∑
j=1

(
ij

p
)ζi+j

Set k = j(i)−1 (mod p). Then, for fixed i, j and k run over the same indices, and
hence

G2 =

p−1∑
k=1

p−1∑
i=1

(
k

p
)ζi(1+k)

=

p−1∑
k=1

(
k

p
)

p−1∑
i=1

ζi(1+k)

= (
−1

p
)(p− 1) +

p−2∑
k=1

(
k

p
)

p−1∑
i=1

ζi(1+k)

(bringing out the terms where k = −1 (mod p)).

We now use the fact that for any pth root of unity η 6= 1,
∑p−1

i=1 η
i = −1. Since

for any k 6≡ −1 (mod p), ζ1+k 6= 1 and is also a pth root, the inner summand in
the above expression becomes −1 and we get

G2 = (
−1

p
)(p− 1)−

p−2∑
k=1

(
k

p
).

Finally, since the number of quadratic residues and quadratic non-residues modulo
p is equal, we know that

p−1∑
k=1

(
k

p
) = 0

and hence
p−2∑
k=1

(
k

p
) = −(

−1

p
)

so substituting this into the formula for G2 we get

G2 = (
−1

p
)p = (−1)

p−1
2 p

by Euler’s Criterion. �
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By the lemma, we have

Gq = G(G2)
q−1
2 = G(−1)

p−1
2

q−1
2 p

q−1
2 = G(

p

q
)p

q−1
2 . (1)

However, we also have

Gq =

p−1∑
i=1

(
i

p
)qζiq (by property 1 above)

=

p−1∑
i=1

(
i

p
)ζiq (since q is odd)

=

p−1∑
i=1

(
i

p
)(
q2

p
)ζiq.

By multiplicity of the Legendre symbol, we can re-write this to get

G2 = (
q

p
)

p−1∑
i=1

(
iq

p
)ζiq.

All that remains is to see that i and iq run over the same indices, and then, recalling
the definition of G, we get

G2 = (
q

p
)G. (2)

The result follows on dividing equations (1) and (2) by G, which we know is non-zero
by the above lemma. �
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