SOME IRRATIONAL NUMBERS

JONATHAN KEOGH

1. Introduction

The first known proof of a number being irrational is older than Euclid himself; a Pythagorean, assuming the square root of two was rational, reached a contradiction, showing it to be in fact rational. Stunning as it was at the time (and allegedly fatal for the discoverer), it was to be another fifteen centuries or so until a proof was found showing any other numbers, excepting the square root of a square-free integer, of being irrational. In this paper, we give three such proofs:

- e is irrational
$-e^{s}$ is irrational for $s \in \mathbb{Q} \backslash\{0\}$
- π^{2} is irrational.

In proving the last theorem we then obtain as an easy corollary that π is irrational.

2. e IS IRRATIONAL

The following theorem is due to Fourier.
Theorem. e is irrational
Proof. Assume $e=\sum_{k=0}^{\infty} 1 / k!=a / b$, the ratio of positive integers. We then have $n!b e=n!a$ for any integer n. The right hand side is an integer, while expanding n!be gives
$n!b e=n!b\left(\sum_{k=0}^{\infty} \frac{1}{k!}\right)=n!b\left(1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}\right)+n!b\left(\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\ldots\right)$.
The first term in this sum is an integer, as all factorials less than n divide $n!$; for the second term we have

$$
\frac{b}{n+1}<n!b\left(\frac{1}{(n+1)!}+\frac{1}{(n+2)!}+\ldots\right)<b\left(\frac{1}{(n+1)}+\frac{1}{(n+1)^{2}}+\ldots\right)=\frac{b}{n}
$$

implying for large enough n (take $n=2 b$ for example) we have $0<n!b\left(\frac{1}{(n+1)!}+\right.$ $\left.\frac{1}{(n+2)!}+\ldots\right)<1$, showing $n!b e$ to not be an integer, a contradiction.

$$
\text { 3. } e^{s} \text { IS IRRATIONAL FOR } r \in \mathbb{Q} \backslash\{0\}
$$

We first prove the following lemma.
Lemma. Define the function $f(x)=\frac{x^{n}(1-x)^{n}}{n!}$, then
(1) f is a polynomial of the form $\frac{1}{n!} \sum_{k=n}^{2 n} c_{k} x^{k}, c_{k} \in \mathbb{Z}$
(2) for $0<x<1,0<f(x)<1 / n$!
(3) for $k \in \mathbb{N}$ we have $f^{(k)}(0), f^{(k)}(1) \in \mathbb{Z}$.

[^0]Proof. (1) \& (2) are obvious. For (3) we have $f^{(k)}(0)=0$ when $0 \leq k<n$; while $f^{(k)}(0)=\frac{c_{k}}{n!} k!\in \mathbb{Z}$ for $n \leq k \leq 2 n$. Noting that $f(x)=f(1-x)$ we get $f^{(k)}(x)=(-1)^{k} f^{(k)}(1-x)$ by the chain rule, implying $f(1)=(-1)^{k} f^{k}(0) \in \mathbb{Z}$, giving the result.

Now for the proof; we consider it in two cases.
Theorem. e^{s} is irrational for $s \in \mathbb{Q} \backslash\{0\}$
Proof. Assume $e^{s}=a / b$, the ratio of positive integers; for the first case we assume s is a positive integer. Choose n such that $n!>a s^{2 n+1}$, for reasons that will become clear shortly. Put

$$
F(x)=s^{2} n f(x)-s^{2 n-1} f^{\prime}(x)+s^{2 n-2} f^{\prime \prime}(x)-\cdots+f^{(2 n)}(x)-f^{(2 n+1)}(x)+\ldots
$$

The higher derivatives greater than $2 n$ vanish, but writing in this way gives the identity $F^{\prime}(x)=-s F(x)+s^{2 n+1} f(x)$, which implies $\frac{d}{d x}\left(e^{s x} F(x)\right)=e^{s x} s^{2 n+1} f(x)$. Now, for a contradiction, put

$$
N=b \int_{0}^{1} e^{2 n+1} e^{s x} f(x) d x=b\left[e^{s x} F(x)\right]_{0}^{1}=b e^{s} F(1)-b F(0)=a F(1)-b F(0),
$$

which is an integer by the previous lemma, but then

$$
N=b \int_{0}^{1} e^{2 n+1} e^{s x} f(x) d x<\frac{b s^{2 n+1} e^{s}}{n!}=\frac{a s^{2 n+1}}{n!}<1
$$

also by the previous lemma, a contradiction.
For the second case, we assume $s \in \mathbb{Q} \backslash\{0\}$. If $e^{s}=e^{\frac{a}{b}}$ is rational then $\left(e^{\frac{a}{b}}\right)^{b}=e^{a}$ would be rational, in contradiction to the first case.

4. π AND π^{2} ARE IRRATIONAL

We re-use the polynomial f defined above for the following. We explicitly assume π is positive, which is clear from the identity $\pi=\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} d x$.
Theorem. π^{2} is irrational
Proof. Assume $\pi=a / b$, the ratio of positive integers. Putting

$$
F(x)=b^{n}\left(\pi^{2 n} f(x)-\pi^{2 n-2} f^{\prime}(x)+\pi^{2 n-4} f^{\prime \prime}(x)-\ldots\right),
$$

we then have

$$
F^{\prime \prime}(x)=-\pi^{2} F(x)+b^{n} \pi^{2 n+2} f(x)
$$

implying

$$
\frac{d}{d x}\left(F^{\prime}(x) \sin \pi x-\pi F(x) \cos \pi x\right)=\pi^{2} a^{n} f(x) \sin \pi x .
$$

Define

$$
N=\pi \int_{0}^{1} a^{n} f(x) \sin \pi x d x=\left[\frac{1}{\pi} f^{\prime}(x) \sin \pi x-F(x) \cos \pi x\right]_{0}^{1}=F(0)+F(1)
$$

which is again an integer from the previous lemma.
Choose n such that $\pi a^{n}<n$! then

$$
0<N=\pi \int_{0}^{1} a^{n} f(x) \sin \pi x d x<\frac{\pi a^{n}}{n!}<1
$$

a contradiction.

Corollary. π is irrational
Proof. If $\pi=\frac{a}{b}$ was the ratio of positive integers, then $\pi^{2}=\frac{a^{2}}{b^{2}}$ would be rational, in contradiction to the previous theorem.

References

[1] Martin Aigner and Gunter M. Ziegler. Proofs from The Book. Springer-Verlag, Berlin, fifth edition, 2014. Including illustrations by Karl H. Hofmann.

[^0]: Date: 04/10/18.

