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1. Introduction

The first known proof of a number being irrational is older than Euclid himself; a
Pythagorean, assuming the square root of two was rational, reached a contradiction,
showing it to be in fact rational. Stunning as it was at the time (and allegedly fatal
for the discoverer), it was to be another fifteen centuries or so until a proof was found
showing any other numbers, excepting the square root of a square-free integer, of
being irrational. In this paper, we give three such proofs:

− e is irrational
− es is irrational for s ∈ Q \ {0}
− π2 is irrational.

In proving the last theorem we then obtain as an easy corollary that π is irrational.

2. e is irrational

The following theorem is due to Fourier.

Theorem. e is irrational

Proof. Assume e =
∑∞

k=0 1/k! = a/b, the ratio of positive integers. We then have
n!be = n!a for any integer n. The right hand side is an integer, while expanding
n!be gives

n!be = n!b(

∞∑
k=0

1

k!
) = n!b(1 +

1

2!
+

1

3!
+ · · ·+ 1

n!
) + n!b(

1

(n+ 1)!
+

1

(n+ 2)!
+ . . . ).

The first term in this sum is an integer, as all factorials less than n divide n!; for
the second term we have

b

n+ 1
< n!b(

1

(n+ 1)!
+

1

(n+ 2)!
+ . . . ) < b(

1

(n+ 1)
+

1

(n+ 1)2
+ . . . ) =

b

n
.

implying for large enough n (take n = 2b for example) we have 0 < n!b( 1
(n+1)! +

1
(n+2)! + . . . ) < 1, showing n!be to not be an integer, a contradiction. �

3. es is irrational for r ∈ Q \ {0}

We first prove the following lemma.

Lemma. Define the function f(x) = xn(1−x)n
n! , then

(1) f is a polynomial of the form 1
n!

∑2n
k=n ckx

k, ck ∈ Z
(2) for 0 < x < 1, 0 < f(x) < 1/n!
(3) for k ∈ N we have f (k)(0), f (k)(1) ∈ Z.
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Proof. (1) & (2) are obvious. For (3) we have f (k)(0) = 0 when 0 ≤ k < n;
while f (k)(0) = ck

n! k! ∈ Z for n ≤ k ≤ 2n. Noting that f(x) = f(1 − x) we get

f (k)(x) = (−1)kf (k)(1 − x) by the chain rule, implying f(1) = (−1)kfk(0) ∈ Z,
giving the result. �

Now for the proof; we consider it in two cases.

Theorem. es is irrational for s ∈ Q \ {0}

Proof. Assume es = a/b, the ratio of positive integers; for the first case we assume s
is a positive integer. Choose n such that n! > as2n+1, for reasons that will become
clear shortly. Put

F (x) = s2nf(x)− s2n−1f ′(x) + s2n−2f ′′(x)− · · ·+ f (2n)(x)− f (2n+1)(x) + . . .

The higher derivatives greater than 2n vanish, but writing in this way gives the
identity F ′(x) = −sF (x) + s2n+1f(x), which implies d

dx (esxF (x)) = esxs2n+1f(x).
Now, for a contradiction, put

N = b

∫ 1

0

e2n+1esxf(x)dx = b[esxF (x)]10 = besF (1)− bF (0) = aF (1)− bF (0),

which is an integer by the previous lemma, but then

N = b

∫ 1

0

e2n+1esxf(x)dx <
bs2n+1es

n!
=
as2n+1

n!
< 1,

also by the previous lemma, a contradiction.
For the second case, we assume s ∈ Q\{0}. If es = e

a
b is rational then (e

a
b )b = ea

would be rational, in contradiction to the first case. �

4. π and π2 are irrational

We re-use the polynomial f defined above for the following. We explicitly assume

π is positive, which is clear from the identity π =
∫ 1

−1
1√

1−x2
dx.

Theorem. π2 is irrational

Proof. Assume π = a/b, the ratio of positive integers. Putting

F (x) = bn(π2nf(x)− π2n−2f ′(x) + π2n−4f ′′(x)− . . . ),
we then have

F ′′(x) = −π2F (x) + bnπ2n+2f(x),

implying
d

dx
(F ′(x) sinπx− πF (x) cosπx) = π2anf(x) sinπx.

Define

N = π

∫ 1

0

anf(x) sinπxdx = [
1

π
f ′(x) sinπx− F (x) cosπx]10 = F (0) + F (1),

which is again an integer from the previous lemma.
Choose n such that πan < n! then

0 < N = π

∫ 1

0

anf(x) sinπxdx <
πan

n!
< 1,

a contradiction. �
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Corollary. π is irrational

Proof. If π = a
b was the ratio of positive integers, then π2 = a2

b2 would be rational,
in contradiction to the previous theorem. �
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