BINOMIAL COEFFICIENT ARE (ALMOST) NEVER POWERS

JONATHAN KEOGH

1. INTRODUCTION

When is (2) equal to an integer power m!? Clearly, there are infinitely many
solutions: take k =1 = 2 and consider an n such that (g) = @ = m? for some

m, then ((277,;1)1) _ (2n—1)2((§n—1)2—1) _ (2n—1)2(24n2—4n) = (2n — 1)24m2; hence,

beginning with (g) = 62, this generates an infinite sequence of solutions. This case
is an exception, however, to the general phenomenon. We shall prove that for £ > 4
and [ > 2, there are no solutions. The proof is by contradiction.

2. PRELIMINARIES

Since () = (,,",), we can implicitly assume n > 2k throughout. We shall use

two theorems, due to Sylvester and Legendre respectively, which we state without
proof.

Theorem. One of the numbers n,n—1,...,n—k+1 is divisible by a prime p > k,
forn > 2k. Equivalently, (Z) has a always has a prime factor p > k, for n > 2k.

Theorem. The number n! contains the prime factor p ezactly 3~ [ k] times
We first prove a proposition, then a lemma, that will smooth out the main proof.
Proposition. If (Z) is equal to an integer power m', then n > k>
Proof. 1If (}}) = m! then, by Sylvester’s theorem, this would imply that p'[n(n —
1)...(n —k+1) for some p > k. It follows that p'|n — j for some j, implying
n> pl > k> k2
O

Lemma. Consider the factors n — j in the numerator of the binomial coefficient
(") =m!; if we write n — j = a;ml for each j, where a; is not divisible b l-th

k ; J AL 7> j Yy any
power, then the numbers a; are simply a permutation of 1,...,k

Proof. Assume a; = a; for some i < j, then a;m; =n—14i >n—j = a;m; implying
m; > my; + 1. We have
k> (n—1i) = (n—j) = aj(mj —mj) > a;((m; +1)' —mj) >
ajlmé._l > l(ajmé)l/Q(n —k+ 1)1/2 > l(% + 1)1/2 > nl/?,

in contradiction to the previous proposition. It remains to show that the integers
a; are actually just 1,...k; for this end, it suffices to prove

aopai . ..ap—1 divides k! .
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We rewrite (7)) =m! as

l l
apdy . .. ak_l(moml .. mk_l) =m'k!.
In cancelling factors we have
apdy . - . ak_lul = ’Ulk!,

with ged(u,v) = 1. If we show v = 1 then we’ll be done; so assume not, and
let v have a prime divisor p. It follows that p divides aga; ...ar_1 also and is
therefore less than or equal to k. We estimate to what exponent it divides it by.
Let i be an arbitrary integer, and b; < --- < by be the multiples of p’ among
n,n—1,....n—k+1 (s <k). We have b, > by + (s — 1)p’; hence,
(s—1p'<bg—by<n—(n—k+1)=k+1,

implying

kE—1

i

s<|F 1|l L

Therefore, if we consider this for each 4, it implies the exponent of p in aga; ...ar_1

is at most
-1

k
(=) +D;
i-1 P
while at the same time the exponent of p in k! is

k
ZLT-J;
i1 P

both by Legendre’s theorem. Finally, then, this implies that p has exponent

Yy -Y ) <i-1,

i1 P '
a contradiction to v! being a I-th power. O
By inspection of this proof, if [ = 2 then, since k > 4, one of the a; must be equal

to 4, a square, which can’t happen. Hence we assume that [ > 3 for the following
proof of the main theorem.

3. THE PROOF
Theorem. There are no solutions to the equation (Z) =m! fork>4andl >3

Proof. Since k > 4 we must have a;, = 1,a;, = 2,a;, = 4,for some i1, is,i3; or,
rewritten,
n—1i; = mll,nfig = 2ml2,n7i3 = 4mé.
We have then (n —i3)? # (n — i1)(n — i3); for if not then, putting b = n — iy and
n—iy=b—xn—1i3=>b+y, with 0 < |z|, |y| < k, gives
(y — )b = wy;
then by our previous proposition, this implies |zy| = bly — x| > n —k > (k —

1)2 > |ay|. Now since m3 # myms, we assume without loss of generality the case
m% > mymg; the other case being similar. We have

2k —Dn>n*—(n—k+1)2>(n—iz)? — (n—i1)(n —i3)
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= 4[mZ — (mim3)'] > 4[(mymz + 1) — (mym3)!'] > 4!~ tmlL
Note that n > k! > k% > 6k. Multiplying across by mims gives
2(k — V)nmyms > 4mimb = 1(n —iy)(n —iz) > l(n — k +1)2 > 3(n — %)2 > 2n?.
But m; < ni < n%; hence
kn

or k3 > n, a contradiction. O

AN

> kmims > (k— 1)myms > n,
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