BINOMIAL COEFFICIENT ARE (ALMOST) NEVER POWERS

JONATHAN KEOGH

1. Introduction

When is $\binom{n}{k}$ equal to an integer power m^{l} ? Clearly, there are infinitely many solutions: take $k=l=2$ and consider an n such that $\binom{n}{2}=\frac{n(n-1)}{2}=m^{2}$ for some m, then $\binom{(2 n-1)^{1}}{2}=\frac{(2 n-1)^{2}\left((2 n-1)^{2}-1\right)}{2}=\frac{(2 n-1)^{2}\left(4 n^{2}-4 n\right)}{2}=(2 n-1)^{2} 4 m^{2}$; hence, beginning with $\binom{9}{2}=6^{2}$, this generates an infinite sequence of solutions. This case is an exception, however, to the general phenomenon. We shall prove that for $k \geq 4$ and $l \geq 2$, there are no solutions. The proof is by contradiction.

2. Preliminaries

Since $\binom{n}{k}=\binom{n}{n-k}$, we can implicitly assume $n \geq 2 k$ throughout. We shall use two theorems, due to Sylvester and Legendre respectively, which we state without proof.

Theorem. One of the numbers $n, n-1, \ldots, n-k+1$ is divisible by a prime $p>k$, for $n \geq 2 k$. Equivalently, $\binom{n}{k}$ has a always has a prime factor $p>k$, for $n \geq 2 k$.

Theorem. The number n ! contains the prime factor p exactly $\sum_{k \geq 1}\left\lfloor\frac{n}{p^{k}}\right\rfloor$ times
We first prove a proposition, then a lemma, that will smooth out the main proof.
Proposition. If $\binom{n}{k}$ is equal to an integer power m^{l}, then $n>k^{2}$
Proof. If $\binom{n}{k}=m^{l}$ then, by Sylvester's theorem, this would imply that $p^{l} \mid n(n-$ 1) $\ldots(n-k+1)$ for some $p>k$. It follows that $p^{l} \mid n-j$ for some j, implying

$$
n \geq p^{l}>k^{l} \geq k^{2}
$$

Lemma. Consider the factors $n-j$ in the numerator of the binomial coefficient $\binom{n}{k}=m^{l}$; if we write $n-j=a_{j} m_{j}^{l}$ for each j, where a_{j} is not divisible by any l-th power, then the numbers a_{j} are simply a permutation of $1, \ldots, k$
Proof. Assume $a_{i}=a_{j}$ for some $i<j$, then $a_{i} m_{i}=n-i>n-j=a_{j} m_{j}$ implying $m_{i} \geq m_{j}+1$. We have

$$
\begin{gathered}
k>(n-i)-(n-j)=a_{j}\left(m_{i}^{l}-m_{j}^{l}\right) \geq a_{j}\left(\left(m_{j}+1\right)^{l}-m_{j}^{l}\right)> \\
a_{j} l m_{j}^{l-1} \geq l\left(a_{j} m_{j}^{l}\right)^{1 / 2}(n-k+1)^{1 / 2} \geq l\left(\frac{n}{2}+1\right)^{1 / 2}>n^{1 / 2},
\end{gathered}
$$

in contradiction to the previous proposition. It remains to show that the integers a_{i} are actually just $1, \ldots k$; for this end, it suffices to prove

$$
a_{0} a_{1} \ldots a_{k-1} \text { divides } k!.
$$

Date: 04/12/18.

We rewrite $\binom{n}{k}=m^{l}$ as

$$
a_{0} a_{1} \ldots a_{k-1}\left(m_{0} m_{1} \ldots m_{k-1}\right)^{l}=m^{l} k!
$$

In cancelling factors we have

$$
a_{0} a_{1} \ldots a_{k-1} u^{l}=v^{l} k!
$$

with $\operatorname{gcd}(u, v)=1$. If we show $v=1$ then we'll be done; so assume not, and let v have a prime divisor p. It follows that p divides $a_{0} a_{1} \ldots a_{k-1}$ also and is therefore less than or equal to k. We estimate to what exponent it divides it by. Let i be an arbitrary integer, and $b_{1}<\cdots<b_{s}$ be the multiples of p^{i} among $n, n-1, \ldots, n-k+1(s \leq k)$. We have $b_{s} \geq b_{1}+(s-1) p^{i}$; hence,

$$
(s-1) p^{i} \leq b_{s}-b_{1} \leq n-(n-k+1)=k+1
$$

implying

$$
s \leq\left\lfloor\frac{k-1}{p^{i}}\right\rfloor+1 \leq\left\lfloor\frac{k}{p^{i}}\right\rfloor+1 .
$$

Therefore, if we consider this for each i, it implies the exponent of p in $a_{0} a_{1} \ldots a_{k-1}$ is at most

$$
\sum_{i=1}^{l-1}\left(\left\lfloor\frac{k}{p^{i}}\right\rfloor+1\right)
$$

while at the same time the exponent of p in $k!$ is

$$
\sum_{i \geq 1}\left\lfloor\frac{k}{p^{i}}\right\rfloor
$$

both by Legendre's theorem. Finally, then, this implies that p has exponent

$$
\sum_{i=1}^{l-1}\left(\left\lfloor\frac{k}{p^{i}}\right\rfloor+1\right)-\sum_{i \geq 1}\left\lfloor\frac{k}{p^{i}}\right\rfloor \leq l-1
$$

a contradiction to v^{l} being a l-th power.
By inspection of this proof, if $l=2$ then, since $k \geq 4$, one of the a_{i} must be equal to 4 , a square, which can't happen. Hence we assume that $l \geq 3$ for the following proof of the main theorem.

3. The proof

Theorem. There are no solutions to the equation $\binom{n}{k}=m^{l}$ for $k \geq 4$ and $l \geq 3$
Proof. Since $k \geq 4$ we must have $a_{i_{1}}=1, a_{i_{2}}=2, a_{i_{3}}=4$,for some i_{1}, i_{2}, i_{3}; or, rewritten,

$$
n-i_{1}=m_{1}^{l}, n-i_{2}=2 m_{2}^{l}, n-i_{3}=4 m_{3}^{l}
$$

We have then $\left(n-i_{2}\right)^{2} \neq\left(n-i_{1}\right)\left(n-i_{3}\right)$; for if not then, putting $b=n-i_{2}$ and $n-i_{1}=b-x, n-i_{3}=b+y$, with $0<|x|,|y|<k$, gives

$$
(y-x) b=x y
$$

then by our previous proposition, this implies $|x y|=b|y-x|>n-k>(k-$ $1)^{2} \geq|x y|$. Now since $m_{2}^{2} \neq m_{1} m_{3}$, we assume without loss of generality the case $m_{2}^{2}>m_{1} m_{3}$; the other case being similar. We have

$$
2(k-1) n>n^{2}-(n-k+1)^{2}>\left(n-i_{2}\right)^{2}-\left(n-i_{1}\right)\left(n-i_{3}\right)
$$

$$
=4\left[m_{2}^{2 l}-\left(m_{1} m_{3}\right)^{l}\right] \geq 4\left[\left(m_{1} m_{3}+1\right)^{l}-\left(m_{1} m_{3}\right)^{l}\right] \geq 4 l m_{1}^{l-1} m_{3}^{l-1}
$$

Note that $n>k^{l} \geq k^{3}>6 k$. Multiplying across by $m_{1} m_{3}$ gives
$2(k-1) n m_{1} m_{3}>4 l m_{1}^{l} m_{3}^{l}=l\left(n-i_{1}\right)\left(n-i_{3}\right)>l(n-k+1)^{2}>3\left(n-\frac{n}{6}\right)^{2}>2 n^{2}$.
But $m_{i} \leq n^{\frac{1}{7}} \leq n^{\frac{1}{3}}$; hence

$$
k n^{\frac{2}{3}} \geq k m_{1} m_{3}>(k-1) m_{1} m_{3}>n
$$

or $k^{3}>n$, a contradiction.

References

[1] Martin Aigner and Gunter M. Ziegler. Proofs from The Book. Springer-Verlag, Berlin, fifth edition, 2014. Including illustrations by Karl H. Hofmann.

