
BINOMIAL COEFFICIENT ARE (ALMOST) NEVER POWERS

JONATHAN KEOGH

1. Introduction

When is
(
n
k

)
equal to an integer power ml? Clearly, there are infinitely many

solutions: take k = l = 2 and consider an n such that
(
n
2

)
= n(n−1)

2 = m2 for some

m, then
(
(2n−1)1

2

)
= (2n−1)2((2n−1)2−1)

2 = (2n−1)2(4n2−4n)
2 = (2n − 1)24m2; hence,

beginning with
(
9
2

)
= 62, this generates an infinite sequence of solutions. This case

is an exception, however, to the general phenomenon. We shall prove that for k ≥ 4
and l ≥ 2, there are no solutions. The proof is by contradiction.

2. Preliminaries

Since
(
n
k

)
=
(

n
n−k

)
, we can implicitly assume n ≥ 2k throughout. We shall use

two theorems, due to Sylvester and Legendre respectively, which we state without
proof.

Theorem. One of the numbers n, n−1, . . . , n−k+1 is divisible by a prime p > k,
for n ≥ 2k. Equivalently,

(
n
k

)
has a always has a prime factor p > k, for n ≥ 2k.

Theorem. The number n! contains the prime factor p exactly
∑

k≥1b
n
pk c times

We first prove a proposition, then a lemma, that will smooth out the main proof.

Proposition. If
(
n
k

)
is equal to an integer power ml, then n > k2

Proof. If
(
n
k

)
= ml then, by Sylvester’s theorem, this would imply that pl|n(n −

1) . . . (n− k + 1) for some p > k. It follows that pl|n− j for some j, implying

n ≥ pl > kl ≥ k2.

�

Lemma. Consider the factors n − j in the numerator of the binomial coefficient(
n
k

)
= ml; if we write n− j = ajm

l
j for each j, where aj is not divisible by any l-th

power, then the numbers aj are simply a permutation of 1, . . . , k

Proof. Assume ai = aj for some i < j, then aimi = n− i > n− j = ajmj implying
mi ≥ mj + 1. We have

k > (n− i)− (n− j) = aj(m
l
i −ml

j) ≥ aj((mj + 1)l −ml
j) >

aj lm
l−1
j ≥ l(ajm

l
j)

1/2(n− k + 1)1/2 ≥ l(
n

2
+ 1)1/2 > n1/2,

in contradiction to the previous proposition. It remains to show that the integers
ai are actually just 1, . . . k; for this end, it suffices to prove

a0a1 . . . ak−1 divides k! .

Date: 04/12/18.

1



2 JONATHAN KEOGH

We rewrite
(
n
k

)
= ml as

a0a1 . . . ak−1(m0m1 . . .mk−1)l = mlk! .

In cancelling factors we have

a0a1 . . . ak−1u
l = vlk!,

with gcd(u, v) = 1. If we show v = 1 then we’ll be done; so assume not, and
let v have a prime divisor p. It follows that p divides a0a1 . . . ak−1 also and is
therefore less than or equal to k. We estimate to what exponent it divides it by.
Let i be an arbitrary integer, and b1 < · · · < bs be the multiples of pi among
n, n− 1, . . . , n− k + 1 (s ≤ k). We have bs ≥ b1 + (s− 1)pi; hence,

(s− 1)pi ≤ bs − b1 ≤ n− (n− k + 1) = k + 1,

implying

s ≤ bk − 1

pi
c+ 1 ≤ b k

pi
c+ 1.

Therefore, if we consider this for each i, it implies the exponent of p in a0a1 . . . ak−1

is at most
l−1∑
i=1

(b k
pi
c+ 1);

while at the same time the exponent of p in k! is∑
i≥1

b k
pi
c;

both by Legendre’s theorem. Finally, then, this implies that p has exponent

l−1∑
i=1

(b k
pi
c+ 1)−

∑
i≥1

b k
pi
c ≤ l − 1,

a contradiction to vl being a l-th power. �

By inspection of this proof, if l = 2 then, since k ≥ 4, one of the ai must be equal
to 4, a square, which can’t happen. Hence we assume that l ≥ 3 for the following
proof of the main theorem.

3. The proof

Theorem. There are no solutions to the equation
(
n
k

)
= ml for k ≥ 4 and l ≥ 3

Proof. Since k ≥ 4 we must have ai1 = 1, ai2 = 2, ai3 = 4,for some i1, i2, i3; or,
rewritten,

n− i1 = ml
1, n− i2 = 2ml

2, n− i3 = 4ml
3.

We have then (n − i2)2 6= (n − i1)(n − i3); for if not then, putting b = n − i2 and
n− i1 = b− x,n− i3 = b + y, with 0 < |x|, |y| < k, gives

(y − x)b = xy;

then by our previous proposition, this implies |xy| = b|y − x| > n − k > (k −
1)2 ≥ |xy|. Now since m2

2 6= m1m3, we assume without loss of generality the case
m2

2 > m1m3; the other case being similar. We have

2(k − 1)n > n2 − (n− k + 1)2 > (n− i2)2 − (n− i1)(n− i3)
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= 4[m2l
2 − (m1m3)l] ≥ 4[(m1m3 + 1)l − (m1m3)l] ≥ 4lml−1

1 ml−1
3 .

Note that n > kl ≥ k3 > 6k. Multiplying across by m1m3 gives

2(k − 1)nm1m3 > 4lml
1m

l
3 = l(n− i1)(n− i3) > l(n− k + 1)2 > 3(n− n

6
)2 > 2n2.

But mi ≤ n
1
l ≤ n

1
3 ; hence

kn
2
3 ≥ km1m3 > (k − 1)m1m3 > n,

or k3 > n, a contradiction. �
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