ON A LEMMA OF LITTLEWOOD AND OFFORD

PETER PHELAN

1. Introduction

The study of algebraic equations and their roots is a matter that has permeated mathematics since the earliest civilisations, yet still remains an active area of interest today. As a testament to this, we shall discuss here what is often referred to as the Littlewood-Offord problem, an inequality proven by Littlewood and Offord in 1943. This result first appeared as a lemma in [2], which as its title suggests was concerned with the number of real roots of random algebraic equations. Some years later a sharper inequality was found by Paul Erdős, and by 1970, it had been proven by Daniel Kleitman that Erdős's result was a special case of a more general inequality which holds for Hilbert spaces. Here we discuss these improvements following their presentation in Daniel Matthews talk given on 21/11/2018 and in Chapter 22 of [1].

2. ERdős's Improvement

The original lemma as proven by Littlewood and Offord can be stated as follows:
Theorem 2.1. Let $a_{1}, \ldots, a_{n} \in \mathbb{C}$ such that $\left|a_{i}\right| \geq 1$ for all i and let $\varepsilon_{i}= \pm 1$ for all i. From this we have 2^{n} linear combinations of the form

$$
\sum_{i=1}^{n} \varepsilon_{i} a_{i}
$$

Then the number of these sums which lie in the interior of any circle radius 1 cannot be greater than

$$
c \frac{2^{n}}{\sqrt{n}} \log n
$$

for some constant $c>0$.
What Erdős had contributed to this result was that the $\log n$ term is unnecessary when the a_{i} are real. Furthermore he conjectured that this would also be true for a_{i} complex, as was later proven by Gyula Katona and Daniel Kleitman. What follows is Erdős's proof.

Let $a_{1}, \ldots, a_{n} \in \mathbb{R}$ such that $a_{i} \geq 1$ for all $i, \varepsilon_{i}= \pm 1$ for all i and let $N=$ $\{1,2, \ldots, n\}$ be the index set. We can say that all $a_{i}>0$ by changing a_{i} to $-a_{i}$ and ε_{i} to $-\varepsilon_{i}$ when it is less than 0 . Suppose a collection of linear combinations of the form $\sum_{i=1}^{n} \varepsilon_{i} a_{i}$ all lie in the interior of an interval of length 2.

Date: 21/11/2018.

For every such linear combination consider the set $I=\left\{i \in N \mid \varepsilon_{i}=1\right\}$. For any two of these sets I, I^{\prime} such that $I \subsetneq I^{\prime}$ we know that

$$
\sum_{i \in I^{\prime}} \varepsilon_{i} a_{i}-\sum_{i \in I} \varepsilon_{i} a_{i}=2 \sum_{i \in I^{\prime} \backslash I} a_{i} \geq 2
$$

which is a contradiction. Therefore for any two such sets I, I^{\prime} that are not equal, I cannot contain I^{\prime} and vice versa.

Recall from the talk "Three famous theorems on finite sets" [1, Chapter 27] given by Alden Mathieu on the 31st of October, that a family \mathcal{F} of subsets of N is called an antichain if no set in \mathcal{F} contains any other set of \mathcal{F}, thus the above sets I form an antichain. Furthermore we recall Sperner's theorem from the same talk, which states that the size of a largest antichain of N is $\binom{n}{\left.\frac{n}{2}\right\rfloor}$. Therefore we have at most $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$ linear combinations in our chosen interval, since each linear combination corresponds to some I. Finally, Stirling's formula [1, Chapter 2] tells us that

$$
\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor} \leq c \frac{2^{n}}{\sqrt{n}}
$$

for some $c>0$, which proves the result.

We can in fact obtain an exact bound in this case if we let n be even and $a_{i}=1$ for all i on the interval $(-1,1)$, which follows from the fact that we will have $\left(\begin{array}{c}n \\ n \\ 2\end{array}\right)$ linear combinations sum to 0 .

3. Kleitman's Improvement

Theorem 3.1. Let $\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{n}} \in \mathbb{R}^{d}$ with $\left|\mathbf{a}_{\mathbf{i}}\right| \geq 1$ for all i and $\varepsilon_{i}= \pm 1$ for all i. Let R_{1}, \ldots, R_{k} be k open regions in \mathbb{R}^{d} such that for any two points x, y in the same region, $|x-y|<2$. Then the number of linear combinations of the form

$$
\sum_{i=1}^{n} \varepsilon_{i} \mathbf{a}_{\mathbf{i}}
$$

that lie in the union of the k regions $\cup_{i=1}^{k} R_{i}$ is at most the sum of the k largest binomial coefficients $\binom{n}{j}$.

Proof. We shall assume that all k regions are disjoint. If we set $r=\left\lfloor\frac{n-k+1}{2}\right\rfloor$ and $s=\left\lfloor\frac{n+k-1}{2}\right\rfloor$, then from [1, Chapter 2], we know that the k largest binomial coefficients are

$$
\binom{n}{r},\binom{n}{r+1}, \ldots,\binom{n}{s}
$$

Moreover we have the following formula

$$
\binom{n}{i}=\binom{n-1}{i}+\binom{n-1}{i-1}
$$

To see why this is true we recall the well-known result that the entries of Pascal's triangle correspond to binomial coefficients, and that the sum of any two adjacent entries in a row is equal to the entry directly beneath them, as we can see below.

	1						
11							
121							
		1	3	3	3	1	
	1		4	6	64	1	
				10	10	5	1
1	6	1	15	20	2015	6	

Therefore we have that

$$
\begin{align*}
\sum_{i=r}^{s}\binom{n}{i} & =\sum_{i=r}^{s}\binom{n-1}{i}+\sum_{i=r}^{s}\binom{n-1}{i-1} \\
& =\sum_{i=r}^{s}\binom{n-1}{i}+\sum_{i=r-1}^{s-1}\binom{n-1}{i} \\
& =\sum_{i=r-1}^{s}\binom{n-1}{i}+\sum_{i=r}^{s-1}\binom{n-1}{i} \tag{1}
\end{align*}
$$

Where the first sum adds the $k+1$ largest, and the second sum the $k-1$ largest binomial coefficients of the form $\binom{n-1}{i}$.

From here we will prove the theorem by induction on n, where for $n=1$ it follows trivially. Let us assume that the theorem is true for $n-1$. To prove that its true for n, we will show that the linear combinations of $\mathbf{a}_{\mathbf{1}}, \ldots, \mathbf{a}_{\mathbf{n}}$ that lie in the k disjoint regions can be bijectively mapped onto combinations of $\mathbf{a}_{\mathbf{1}}, \ldots, \mathbf{a}_{\mathbf{n}-\mathbf{1}}$ that lie in $k+1$ or $k-1$ regions.

To do this, we begin with the claim that at least one of the translated regions $R_{j}-\mathbf{a}_{\mathbf{n}}$ is disjoint from all other translated regions $R_{1}+\mathbf{a}_{\mathbf{n}}, \ldots, R_{k}+\mathbf{a}_{\mathbf{n}}$. First let us consider the hyperplane $H=\left\{x \in \mathbb{R}^{d} \mid\left\langle\mathbf{a}_{\mathbf{n}}, x\right\rangle=c\right\}$ for some particular c. H is orthogonal to $\mathbf{a}_{\mathbf{n}}$ and has each translated region of the form $R_{i}+\mathbf{a}_{\mathbf{n}}$ in the region $\left\langle\mathbf{a}_{\mathbf{n}}, x\right\rangle \geq c$. Moreover c is chosen so that the hyperplane touches the closure of some region $R_{j}+\mathbf{a}_{\mathbf{n}}$. H exists since the regions are by definition bounded. Since R_{j} is an open region, for any $x \in R_{j}$ and $y \in \bar{R}_{j}$ the closure of R_{j}, we have $|x-y|<2$ by construction. We claim that that $R_{j}-\mathbf{a}_{\mathbf{n}}$ lies in the region $\left\langle\mathbf{a}_{\mathbf{n}}, x\right\rangle<c$. So assume that it doesn't, then for some $x \in R_{j}$

$$
\begin{aligned}
\left\langle\mathbf{a}_{\mathbf{n}}, x-\mathbf{a}_{\mathbf{n}}\right\rangle & \geq c \\
\left\langle\mathbf{a}_{\mathbf{n}}, x\right\rangle-\left\langle\mathbf{a}_{\mathbf{n}}, \mathbf{a}_{\mathbf{n}}\right\rangle & \geq c \\
\left\langle\mathbf{a}_{\mathbf{n}}, x\right\rangle & \geq\left|\mathbf{a}_{\mathbf{n}}\right|^{2}+c
\end{aligned}
$$

Let y be the point in the closure of R_{j} that touches the hyperplane, then

$$
\begin{aligned}
\left\langle\mathbf{a}_{\mathbf{n}}, y+\mathbf{a}_{\mathbf{n}}\right\rangle & =c \\
\left\langle\mathbf{a}_{\mathbf{n}}, y\right\rangle+\left\langle\mathbf{a}_{\mathbf{n}}, \mathbf{a}_{\mathbf{n}}\right\rangle & =c \\
-\left\langle\mathbf{a}_{\mathbf{n}}, y\right\rangle & =\left|\mathbf{a}_{\mathbf{n}}\right|^{2}-c \\
\left\langle\mathbf{a}_{\mathbf{n}},-y\right\rangle & =\left|\mathbf{a}_{\mathbf{n}}\right|^{2}-c \\
\left\langle\mathbf{a}_{\mathbf{n}}, x-y\right\rangle & \geq 2\left|\mathbf{a}_{\mathbf{n}}\right|^{2}
\end{aligned}
$$

So by the Cauchy-Schwarz inequality we have that

$$
2\left|\mathbf{a}_{\mathbf{n}}\right|^{2} \leq\left\langle\mathbf{a}_{\mathbf{n}}, x-y\right\rangle \leq\left|\mathbf{a}_{\mathbf{n}}\right||x-y|
$$

Since $\left|\mathbf{a}_{\mathbf{i}}\right| \geq 1$ for all i, we obtain that

$$
2 \leq 2\left|\mathbf{a}_{\mathbf{n}}\right| \leq|x-y|
$$

which is a contradiction. Therefore at least one region $R_{j}-\mathbf{a}_{\mathbf{n}}$ is disjoint from the other translated regions $R_{1}+\mathbf{a}_{\mathbf{n}}, \ldots, R_{k}+\mathbf{a}_{\mathbf{n}}$ as required.

To complete the proof, we consider two classes of linear combinations that lie in the union of open regions as described above. In class 1 we have all the linear combinations $\sum_{i=1}^{n} \varepsilon_{i} \mathbf{a}_{\mathbf{i}}$ such that either $\varepsilon_{n}=-1$ or $\varepsilon_{n}=1$ and the sum lies in R_{j}. Let the remaining sums be in class 2 , so those with $\varepsilon_{n}=1$ such that the sum does not lie in R_{j}. From this it is clear that the linear combinations $\sum_{i=1}^{n-1} \varepsilon_{i} a_{i}$ in class 1 correspond to the $k+1$ disjoint regions $R_{1}+\mathbf{a}_{\mathbf{n}}, \ldots, R_{k}+\mathbf{a}_{\mathbf{n}}, R_{j}-\mathbf{a}_{\mathbf{n}}$, whereas the linear combinations $\sum_{i=1}^{n-1} \varepsilon_{i} a_{i}$ in class 2 correspond to the $k-1$ disjoint regions $R_{1}-\mathbf{a}_{\mathbf{n}}, \ldots, R_{k}-\mathbf{a}_{\mathbf{n}}$.

So by induction class 1 contains at most $\sum_{i=r-1}^{s}\binom{n-1}{i}$ linear combinations and class 2 contains at most $\sum_{i=r}^{s-1}\binom{n-1}{i}$ linear combination. Therefore by the above sum (1), the proof is true for all n and we have the desired inequality.

We now conclude with some interesting observations. Recall again that the largest binomial coefficient of a given binomial power $(x+1)^{n}$ is $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$. So for $k=1$ we get $\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$ as the upper bound. Again since Stirling's formula tells us that

$$
\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor} \leq c \frac{2^{n}}{\sqrt{n}}
$$

for some $c>0$, so we have reduced the original lemma to a corollary of Kleitman's result.

We should also note that for $\mathbf{a}_{\mathbf{1}}=\ldots,=\mathbf{a}_{\mathbf{n}}=\mathbf{a}=(1,0, \ldots, 0)^{T}$ we get an exact bound. To see this first we let n be even, then we have $\binom{n}{\frac{n}{2}}$ sums equal to $0,\binom{n}{\frac{n}{2}-1}$ sums equal to $-2 \mathbf{a}$ and $\binom{n}{\frac{n}{2}+1}$ sums equal to $2 \mathbf{a}$, and so on. So if we choose open balls of radius 1 about each of the points

$$
\left\{-2\left\lfloor\frac{k-1}{2}\right\rfloor \mathbf{a}, \ldots,-2 \mathbf{a}, 0,2 \mathbf{a}, \ldots, 2\left\lfloor\frac{k-1}{2}\right\rfloor \mathbf{a}\right\}
$$

then we obtain the sum

$$
\binom{n}{\left\lfloor\frac{n-k+1}{2}\right\rfloor}+\cdots+\binom{n}{\left\lfloor\frac{n-2}{2}\right\rfloor}+\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}+\binom{n}{\left\lfloor\frac{n+2}{2}\right\rfloor}+\cdots+\binom{n}{\left\lfloor\frac{n+k-1}{2}\right\rfloor}
$$

which is the exact bound, since the largest terms in a binomial expansion are those closest to the centre. The argument is the same for odd n.

References

[1] Martin Aigner and Günter M. Ziegler. Proofs from The Book. Springer-Verlag, Berlin, fifth edition, 2014. Including illustrations by Karl H. Hofmann.
[2] J. E. Littlewood and A. C. Offord. On the number of real roots of a random algebraic equation. Rec. Math.[Mat. Sbornik] N.S., 54:277-286, 1943.

