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1. Introduction

The study of algebraic equations and their roots is a matter that has permeated
mathematics since the earliest civilisations, yet still remains an active area of in-
terest today. As a testament to this, we shall discuss here what is often referred to
as the Littlewood-Offord problem, an inequality proven by Littlewood and Offord
in 1943. This result first appeared as a lemma in [2], which as its title suggests
was concerned with the number of real roots of random algebraic equations. Some
years later a sharper inequality was found by Paul Erdős, and by 1970, it had been
proven by Daniel Kleitman that Erdős’s result was a special case of a more gen-
eral inequality which holds for Hilbert spaces. Here we discuss these improvements
following their presentation in Daniel Matthews talk given on 21/11/2018 and in
Chapter 22 of [1].

2. Erdős’s Improvement

The original lemma as proven by Littlewood and Offord can be stated as follows:

Theorem 2.1. Let a1, . . . , an ∈ C such that |ai| ≥ 1 for all i and let εi = ±1 for
all i. From this we have 2n linear combinations of the form

n∑
i=1

εiai

Then the number of these sums which lie in the interior of any circle radius 1
cannot be greater than

c
2n√
n

log n

for some constant c > 0.

What Erdős had contributed to this result was that the log n term is unnecessary
when the ai are real. Furthermore he conjectured that this would also be true for ai
complex, as was later proven by Gyula Katona and Daniel Kleitman. What follows
is Erdős’s proof.

Let a1, . . . , an ∈ R such that ai ≥ 1 for all i, εi = ±1 for all i and let N =
{1, 2, . . . , n} be the index set. We can say that all ai > 0 by changing ai to −ai
and εi to −εi when it is less than 0. Suppose a collection of linear combinations of
the form

∑n
i=1 εiai all lie in the interior of an interval of length 2.
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For every such linear combination consider the set I = {i ∈ N | εi = 1}. For any
two of these sets I, I ′ such that I ( I ′ we know that∑

i∈I′

εiai −
∑
i∈I

εiai = 2
∑

i∈I′\I

ai ≥ 2

which is a contradiction. Therefore for any two such sets I, I ′ that are not equal, I
cannot contain I ′ and vice versa.

Recall from the talk ”Three famous theorems on finite sets” [1, Chapter 27]
given by Alden Mathieu on the 31st of October, that a family F of subsets of N
is called an antichain if no set in F contains any other set of F , thus the above
sets I form an antichain. Furthermore we recall Sperner’s theorem from the same
talk, which states that the size of a largest antichain of N is

(
n
bn2 c
)
. Therefore we

have at most
(

n
bn2 c
)

linear combinations in our chosen interval, since each linear

combination corresponds to some I. Finally, Stirling’s formula [1, Chapter 2] tells
us that (

n

bn2 c

)
≤ c

2n√
n

for some c > 0, which proves the result.

We can in fact obtain an exact bound in this case if we let n be even and ai = 1
for all i on the interval (−1, 1), which follows from the fact that we will have

(
n
n
2

)
linear combinations sum to 0.

3. Kleitman’s Improvement

Theorem 3.1. Let a1, . . . ,an ∈ Rd with |ai| ≥ 1 for all i and εi = ±1 for all i. Let
R1, . . . , Rk be k open regions in Rd such that for any two points x, y in the same
region, |x− y| < 2. Then the number of linear combinations of the form

n∑
i=1

εiai

that lie in the union of the k regions ∪ki=1Ri is at most the sum of the k largest
binomial coefficients

(
n
j

)
.

Proof. We shall assume that all k regions are disjoint. If we set r = bn−k+1
2 c

and s = bn+k−1
2 c, then from [1, Chapter 2], we know that the k largest binomial

coefficients are (
n

r

)
,

(
n

r + 1

)
, . . . ,

(
n

s

)
Moreover we have the following formula(

n

i

)
=

(
n− 1

i

)
+

(
n− 1

i− 1

)
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To see why this is true we recall the well-known result that the entries of Pascal’s
triangle correspond to binomial coefficients, and that the sum of any two adjacent
entries in a row is equal to the entry directly beneath them, as we can see below.

1 6 15 20 15 6 1
1 5 10 10 5 1

1 4 6 4 1
1 3 3 1

1 2 1
1 1

1

Therefore we have that

s∑
i=r

(
n

i

)
=

s∑
i=r

(
n− 1

i

)
+

s∑
i=r

(
n− 1

i− 1

)

=

s∑
i=r

(
n− 1

i

)
+

s−1∑
i=r−1

(
n− 1

i

)

=

s∑
i=r−1

(
n− 1

i

)
+

s−1∑
i=r

(
n− 1

i

)
(1)

Where the first sum adds the k + 1 largest, and the second sum the k − 1 largest
binomial coefficients of the form

(
n−1
i

)
.

From here we will prove the theorem by induction on n, where for n = 1 it follows
trivially. Let us assume that the theorem is true for n−1. To prove that its true for
n, we will show that the linear combinations of a1, . . . ,an that lie in the k disjoint
regions can be bijectively mapped onto combinations of a1, . . . ,an−1 that lie in
k + 1 or k − 1 regions.

To do this, we begin with the claim that at least one of the translated regions
Rj − an is disjoint from all other translated regions R1 + an, . . . , Rk + an. First let
us consider the hyperplane H = {x ∈ Rd | 〈an, x〉 = c} for some particular c. H is
orthogonal to an and has each translated region of the form Ri + an in the region
〈an, x〉 ≥ c. Moreover c is chosen so that the hyperplane touches the closure of some
region Rj + an. H exists since the regions are by definition bounded. Since Rj is
an open region, for any x ∈ Rj and y ∈ R̄j the closure of Rj , we have |x−y| < 2 by
construction. We claim that that Rj − an lies in the region 〈an, x〉 < c. So assume
that it doesn’t, then for some x ∈ Rj

〈an, x− an〉 ≥ c

〈an, x〉 − 〈an,an〉 ≥ c

〈an, x〉 ≥ |an|2 + c



4 PETER PHELAN

Let y be the point in the closure of Rj that touches the hyperplane, then

〈an, y + an〉 = c

〈an, y〉+ 〈an,an〉 = c

−〈an, y〉 = |an|2 − c

〈an,−y〉 = |an|2 − c

〈an, x− y〉 ≥ 2|an|2

So by the Cauchy-Schwarz inequality we have that

2|an|2 ≤ 〈an, x− y〉 ≤ |an||x− y|
Since |ai| ≥ 1 for all i, we obtain that

2 ≤ 2|an| ≤ |x− y|
which is a contradiction. Therefore at least one region Rj − an is disjoint from the
other translated regions R1 + an, . . . , Rk + an as required.

To complete the proof, we consider two classes of linear combinations that lie in
the union of open regions as described above. In class 1 we have all the linear
combinations

∑n
i=1 εiai such that either εn = −1 or εn = 1 and the sum lies in Rj .

Let the remaining sums be in class 2, so those with εn = 1 such that the sum does
not lie in Rj . From this it is clear that the linear combinations

∑n−1
i=1 εiai in class 1

correspond to the k + 1 disjoint regions R1 +an, . . . , Rk +an, Rj −an, whereas the

linear combinations
∑n−1

i=1 εiai in class 2 correspond to the k − 1 disjoint regions
R1 − an, . . . , Rk − an.

So by induction class 1 contains at most
∑s

i=r−1
(
n−1
i

)
linear combinations and

class 2 contains at most
∑s−1

i=r

(
n−1
i

)
linear combination. Therefore by the above

sum (1), the proof is true for all n and we have the desired inequality. �

We now conclude with some interesting observations. Recall again that the
largest binomial coefficient of a given binomial power (x + 1)n is

(
n
bn2 c
)
. So for

k = 1 we get
(

n
bn2 c
)

as the upper bound. Again since Stirling’s formula tells us that(
n

bn2 c

)
≤ c

2n√
n

for some c > 0, so we have reduced the original lemma to a corollary of Kleitman’s
result.

We should also note that for a1 = . . . ,= an = a = (1, 0, . . . , 0)T we get an exact
bound. To see this first we let n be even, then we have

(
n
n
2

)
sums equal to 0,

(
n

n
2−1
)

sums equal to −2a and
(

n
n
2 +1

)
sums equal to 2a, and so on. So if we choose open

balls of radius 1 about each of the points

{−2bk − 1

2
ca, . . . ,−2a, 0, 2a, . . . , 2bk − 1

2
ca}
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then we obtain the sum(
n

bn−k+1
2 c

)
+ · · ·+

(
n

bn−22 c

)
+

(
n

bn2 c

)
+

(
n

bn+2
2 c

)
+ · · ·+

(
n

bn+k−1
2 c

)
which is the exact bound, since the largest terms in a binomial expansion are those
closest to the centre. The argument is the same for odd n.
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