
THE PIGEON-HOLE PRINCIPLE AND DOUBLE COUNTING

VINCENT GÉLINAS

1. Introduction

The pigeon-hole principle and the principle of double counting are elementary
results from combinatorics, whose statements and proofs can be thought of as ob-
vious and yet can be applied to derive fairly non-obvious results. The purpose of
this note is as an introduction to these two principles and their applications, begin-
ning with simple examples and eventually reaching more sophisticated results. We
end the note with an elementary combinatorial proof of the Brouwer fixed point
theorem due to Sperner. The material below consists mostly of highlights from [1,
Chapter 27], with main difference being our presentation of the proof of Sperner’s
Lemma which follows the argument presented in Pedro Tamaroff’s talk.

2. The pigeon-hole principle

Principle. If n pigeons are placed into r pigeon-holes and n > r, then one pigeon-
hole contains more than one pigeon.

This pigeon-hole principle has a myriad of immediate applications. Moreover,
one often appeals to a more quantitative version which we record below. Recall
that we write dxe for the smallest integer greater than x ∈ R≥0.

Proposition 2.1. If n pigeons are placed into r pigeon-holes and n > r, then one
pigeon-hole contains ≥ dnr e pigeons.

Proof. If each pigeon-hole contains < dnr e pigeons, then in particular it contains
< n

r pigeons. We then have n < r(n
r ) = n pigeons in total, a contradiction. �

We will give some applications of the pigeon-hole principle, starting with simple
statements, and gradually increasing the sophistication. The next two propositions
are fairly simple applications of the principle.

Proposition 2.2. Let S ⊆ {1, 2, . . . , 2n} be a set of n+ 1 natural numbers. Then
one can find two natural numbers in S which are coprime.

Proof. It suffices to show that S contains a subset {k, k + 1} consisting of two
consecutive numbers. The set

{1, 2, . . . , 2n} = {1, 2} ∪ {3, 4} ∪ · · · ∪ {2n− 1, 2n}
is a union of n such subsets, and S contains n + 1 elements. Distributing the
elements of S, we are done by the pigeon-hole principle. �

There is a nice variation on the previous example.

Proposition 2.3. Let S ⊆ {1, 2, . . . , 2n} be a set of n+ 1 natural numbers. Then
one can find two natural numbers in S such that one divides the other.
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Proof. Given a natural number k ∈ S, we may write it in the form k = 2em for m
odd and e ∈ Z≥0, and refer to m as the odd part of k.

The odd number m must lie in the set {1, 3, . . . , 2n−1} of cardinality n. Sending
an element k ∈ S to its odd part, we obtain two elements of S with the same odd
part since |S| = n+ 1 > n, and so one must divide the other. �

Moving on to more involved examples, we first mention an application of the
pigeon-hole principle to the study of sums of integer sequences. The following is
attributed to Andrew Vázsonyi and Marta Sved.

Proposition 2.4 (Vázsonyi-Sved). Let a1, . . . , an be integers, possibly repeated.
Then there is a subset of consecutively indexed integers ak+1, ak+2, . . . , al such that
the sum

ak+1 + ak+2 + · · ·+ al

is a multiple of n.

Proof. Let S = {0, 1, . . . , n} and R = {0, 1, . . . , n − 1} and consider the map f :
S → R determined by the remainder of f(m) = a1 + a2 + · · ·+ am modulo n. By
the pigeon-hole principle, we have f(k) = f(l) for some pair k < l in S, and so

l∑
i=k+1

ai =

l∑
i=1

ai −
k∑

i=1

ai

reduces to zero modulo n. The set ak+1, ak+2, . . . , al then has the wanted property.
�

We end this section with an interesting result coming from Ramsey problems.
Ramsey theory is concerned in general with finding ordered substructures inside
sufficiently large unordered sets.

Proposition 2.5 (Erdős-Szekeres). Let n,m ∈ N and consider a sequence of nm+1
distinct real numbers x = (x1, . . . , xnm+1). Then in the sequence x, either there is
an increasing subsequence of length m+ 1

xi1 < xi2 < · · · < xim+1
(i1 < i2 < · · · < im+1),

a decreasing subsequence of length n+ 1

xj1 > xj2 > · · · > xjm+1 (j1 < j2 < · · · < jm+1),

or both.

Proof. Let S = {x1, . . . , xnm+1} be our set of nm + 1 real numbers, and define
the function L : S → N such that L(xi) is the length of the longest increasing
subsequence of x starting at xi. If for some xi we have L(xi) ≥ m + 1 then our
claim holds, and so assume to the contrary that L takes value in {1, 2, . . .m}.

By the pigeon-hole principle, we know that there exists an s ∈ {1, 2, . . . ,m} such
that |L−1(s)| ≥ dmn+1

m e = n+1. Taking n+1 distinct elements xj1 , xj2 , . . . , xjn+1
∈

L−1(s), indexed such that j1 < j2 < · · · < jn+1, we claim that the subsequence
(xj1 , xj2 , . . . , xjn+1

) of x is then decreasing, which will establish our claim.

If not, then xjk < xjk+1
for some 1 ≤ k ≤ n. Since L(xjk+1

) = s, there is an
increasing subsequence of x of maximal length s starting at xjk+1

, and therefore an
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increasing subsequence starting at xjk of length s+ 1. This contradicts L(xjk) = s
and the definition of L. �

3. Double counting, or counting in two different ways

Consider finite sets A,B, and a subset S ⊆ A × B of its Cartesian product.
Whenever (a, b) ∈ S, we say that a ∈ A and b ∈ B are incident. Given b ∈ B, let
us denote the number of elements of A incident to b as |A|b, and similarly define
the number |B|a for a ∈ A. Formally:

|A|b = |{a ∈ A | (a, b) ∈ S}|
|B|a = |{b ∈ B | (a, b) ∈ S}|.

The principle of double counting is encapsulated in the following equality:∑
a∈A
|B|a = |S| =

∑
b∈B

|A|b.

One can picture this equality in the following way. For (a, b) ∈ A × B, define the
coefficient

ma,b =

{
1 (a, b) ∈ S
0 (a, b) /∈ S.

This gives a matrix M = (ma,b)a∈A,b∈B indexed by the elements of A × B. Then
|B|a is the sum of the a-th row, |A|b is the sum of the b-th column, and the sum of
all entries in the matrix is |S|. The above equality corresponds to the two ways of
adding the entries of M , either by adding the sums of rows first, or by adding the
sums of columns.

We next give a simple application of double counting. Recall that a graph
G = (V,E) consists of a set of vertices V , and a set of edges E ⊆ V {0,1}, consisting
of two-elements subsets of V .1 We think of E as lines joining two distinct vertices
in V . We say that G is finite if V is a finite set. Given a vertex v ∈ V , its degree
is the number of edges containing v, denoted deg(v).

Proposition 3.1 (Degree sum formula). Let G = (V,E) be a finite graph. Then
we have ∑

v∈V
deg(v) = 2|E|.

In particular, the number of vertices of odd degree is even.

Proof. Let S ⊆ V × E be the set of pairs (v, e) with v a vertex of e. Summing up
vertices first, each vertex occurs as many times as its degree and so∑

v∈V
deg(v) = |S|.

Summing up edge first, note that each edge e has exactly two end vertices, and so

2|E| = |S|.
Equating them, we obtain the stated formula. To see the final claim, reduce the
degree sum formula modulo 2 and note that odd degree vertices contribute 1, while
even degree vertices do not contribute. �

1More precisely, what we have defined is an undirected, simple graph G.
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4. The Brouwer Fixed Point Theorem and Sperner’s Lemma

The celebrated Brouwer fixed point theorem is stated as follows.

Theorem 4.1 (Brouwer, 1912). Let f : Bn → Bn be a continuous map from the n-
dimensional Euclidean unit ball to itself. Then f has a fixed point, that is f(x) = x
for some x ∈ Bn.

In dimension one this follows from the intermediate value theorem, but modern
proofs in higher dimension typically proceed using machinery not available in 1912,
such as simplicial homology. It is quite impressive that one can give an elementary
combinatorial proof of this theorem, as was done by Sperner in 1928 at the age
of 23, using what is now known as Sperner’s Lemma. In this section, working in
dimension n = 2 only, we will give a proof of this lemma and show how to obtain
Brouwer’s fixed point theorem as a corollary.

We begin with some preliminaries before stating the lemma. Fix a triangle ∆
with vertices (v1, v2, v3), and note that in dimension 2 the ball B2 is homeomorphic
∆. It then suffices to prove that any continuous map f : ∆ → ∆ has a fixed
point. We will analyse the behavior of f by subdividing ∆ into smaller and smaller
triangles.

A triangulation of ∆ is a finite decomposition of ∆ into smaller triangles, which
fit together edge-by-edge. Fixing a triangulation of ∆, assume that we have colored
the vertices of the smallest triangles from a set of “colors” {1, 2, 3}, done according
to the following rules:

• The vertex vi receives the color i.
• Any vertex on the edge between vi, vj has color in {i, j}.
• The interior vertices are colored arbitrarily.

Given a triangulation of ∆, we will refer to a coloring respecting the above rules as
a Sperner coloring. The example below is a Sperner coloring, where we use (blue,
orange, magenta) for the colors (1, 2, 3):

Lemma 4.2 (Sperner’s Lemma). Let ∆ have a triangulation whose vertices have
a Sperner coloring. Then one of the triangles in the triangulation is 3-colored, that
is, has all vertices of different colors.
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Proof. First, we say that an edge is {1, 2}-colored if its vertices have one of each
color in {1, 2}. We will traverse all edges which are {1, 2}-colored, in the hope of
arriving at a 3-colored triangle. Note that the outside edges of our triangulation
between v1 and v2 have vertices colored by the set {1, 2} by our coloring rule. Let
E be the set of {1, 2}-colored edges between v1, v2, whose cardinality is odd by a
simple induction.

Entering an edge in E and traversing {1, 2}-colored edges without backtracking,
one of three things can happen:

1) We visit a triangle more than once.
2) We eventually emerge at a different edge in E.
3) We eventually reach a dead-end.

We claim that 1) cannot happen. If it does, then there is a first revisited triangle
in our path. We previously entered this triangle via a first {1, 2}-colored edge, left
via a second {1, 2}-colored edge, and must now be entering via the third edge by
our assumption. But this also cannot be {1, 2}-colored.

Therefore we never revisit triangles, and either exit through another edge in E or
reach a dead-end, which must be a 3-colored triangle. We finish by noting that the
in-and-out paths pair up an even numbers of edges in E, which had odd cardinality,
and so an odd number of edges must lead to a dead-end. �

Remark 4.3. It seems that we have not used any of the ideas developed in the
previous sections. Is this really the case?

We now turn to the proof of Brouwer’s Theorem in dimension 2. We will denote
by T a given triangulation of ∆, and let δ(T ) stand for the maximal length of
edges of small triangles in the triangulation T . Note that we can always construct
a sequence of triangulations T1, T2, . . . , Tk, . . . , each refining the previous one, such
that limk→∞ δ(Tk) = 0. For instance, one add a vertex to any small triangle at its
centre of mass and join it to its vertices.

Corollary 4.4 (Brouwer). Any continuous map f : ∆→ ∆ has a fixed point.

Proof. It’s enough to do this for any specific triangle, and we pick ∆ ⊆ R3 with
vertices e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1) for bookkeeping purposes.

Pick a sequence of triangulations Tk with limk→∞δ(Tk) = 0. For the trian-
gulation Tk, we color its vertices v = (v1, v2, v3) ∈ R3 by the color λ(v) :=
min{i | f(v)i < vi}. This color is defined so long as f(v)−v has some negative coor-
dinate. If f(v)i ≥ vi for i = 1, 2, 3, we claim that v must be a fixed point. To see this,
note that ∆ ⊆ R3 lies in the hyperplane {x = (x1, x2, x3) ∈ R3 | x1 + x2 + x3 = 1}
and so

∑3
i=1 (f(v)i − vi) = 0. We deduce that f(v)− v in fact has both a negative

and positive coordinate, unless v is a fixed point.

If no vertex of Tk is a fixed point, we claim that this coloring satisfies the hy-
pothesis of Sperner’s lemma. The only negative coordinate of f(ei)− ei is the i-th,
and so λ(ei) = i. Next, if the vertex v ∈ ∆ lies on the edge opposite ei, then its i-th
coordinate is zero and so f(v) − ei has non-negative i-th coordinate, which gives
λ(v) 6= i. This verifies the hypothesis.
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Sperner’s Lemma guarantees a 3-colored triangle in Tk, with vertices vk:1, vk:2, vk:3

colored as λ(vk:i) = i, say. The sequence of points (vk:1)k≥1 in the compact set
∆ has a convergent subsequence, and replacing {Tk}k≥1 with the corresponding
subsequence we can assume that (vk:1)k≥1 converges to some point v ∈ ∆. Since
the edge distance δ(Tk) → 0 goes to zero, the sequences (vk:2)k≥1, (vk:3)k≥1 also
converge to v. We claim that f(v) = v.

Since λ(vk:1) = 1, f(v)1 − vk:1
1 < 0, and similarly f(v)i − vk:i

i < 0 for i = 2, 3.
By continuity we have f(v)i − vi ≤ 0 for all i = 1, 2, 3. But this contradicts that
f(v) − v must have both a negative and positive coordinate, unless v is a fixed
point. �
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