Assignment 7
MA341C - Seminar on Proofs from THE BOOK
Trinity College Dublin

Name and surname:
Student number:

[^0]A chain in a partially ordered set is a subset of pairwise comparable elements. An antichain in a partially ordered set is a subset of pairwise incomparable elements. (These notions generalise the notions of chains and antichains presented in class, where the partially ordered set would be the set of all subsets of $\{1, \ldots, n\}$ ordered by inclusion.) The celebrated Dilworth's theorem states that the maximal size of an antichain in any partially ordered set P is equal to the minimal number of disjoint chains into which one can partition P.

Exercise 1. Show that the family of all $n / 2$-sets (for even n) or, respectively, the two families of all ($n-1$)/2-sets and ($n+1$)/2-sets (for odd n) are the only antichains of the maximal possible size. (Hint: show that when n is odd, if $X \subset Y$ are, respectively, an $(n-1) / 2$-set and an $(n+1) / 2$-set, then any antichain of maximal size must contain either X or Y, and use this to obtain a contradiction.)

Exercise 2. Use Dilworth's theorem to prove the following results:

1. If each chain in a partially ordered set P is of size at most m and each antichain is of size at most n, then the number of elements in P is at most $m n$.
2. Every sequence of $n m+1$ distinct real numbers has either an increasing subsequence of size n, or a decreasing subsequence of size m. (Hint: use this sequence to define a partially ordered set P in which decreasing subsequences become antichains.)

Exercise 3. Prove the dual of Dilworth's theorem: the maximal size of a chain in a finite partially ordered set P is equal to the minimal number of disjoint antichains into which one can partition P. (Hint: suppose that for two elements $x \neq y \in P$, the longest chain with the maximal element x is as long as the longest chain with the maximal element y. Show that x and y are incomparable.)

Exercise 4. Show that for a given d, the quantity

$$
p=1+\frac{2}{\pi}\left(\frac{\ell}{d}\left(1-\sqrt{1-\frac{d^{2}}{\ell^{2}}}\right)-\arcsin \frac{d}{\ell}\right),
$$

viewed as a function of $\ell \geq d$, is an increasing function that tends to 1 as $\ell \rightarrow \infty$.

[^0]: Note: solutions to this assignment are due by 1lam on Wednesday, November 7th. Please attach a cover sheet with a declaration (http://tcd-ie.libguides.com/plagiarism/declaration) confirming that you know and understand College rules on plagiarism. All exercises are weighed equally unless otherwise stated.

