Assignment 6
MA341C - Seminar on Proofs from THE BOOK
Trinity College Dublin

\qquad
Student number:
Number of pages: \qquad

[^0]Exercise 1. Prove that it is impossible to draw an uncountable family of pairwise disjoint figure-eightshapes in \mathbb{R}^{2} (a figure-eight-shape are two circles tangent to each other which are in different halfplanes relative to the tangent line).

Exercise 2. Two points A and B are chosen on the unit circle.

1. For the given n, what is the maximal perimeter of an n-gon inscribed into the unit circle for which the segment $A B$ is one of its sides?
2. Same question if we replace the words "maximal perimeter" by "maximal area".

Exercise 3. Show that for every prime $p>2$, there exists a non-Abelian finite group G for which all non-unit elements are of order p.

Exercise 4.

1. Show that the function

$$
\phi(x)=\left\{\begin{array}{c}
e^{-1 / x^{2}}, x>0 \\
0,
\end{array}\right.
$$

is smooth (i.e. has derivatives of all orders at all $x \in \mathbb{R}$), and that $\phi^{(n)}(0)=0$ for all $n \geq 0$.
2. Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Show that there exists a smooth function $\psi(x)$ such that $\psi^{(n)}(0)=a_{n}$ for all $n \geq 0$.

[^0]: Note: solutions to this assignment are due by llam on Wednesday, October 31st. Please attach a cover sheet with a declaration (http://tcd-ie.libguides.com/plagiarism/declaration) confirming that you know and understand College rules on plagiarism. All exercises are weighed equally unless otherwise stated.

