Assignment 5
MA341C - Seminar on Proofs from THE BOOK
Trinity College Dublin

NAME AND SURNAME: \qquad
Student number: NUMBER OF PAGES:

Abstract

Note: solutions to this assignment are due by llam on Wednesday, October 17th. Please attach a cover sheet with a declaration (http://tcd-ie.libguides.com/plagiarism/declaration) confirming that you know and understand College rules on plagiarism. All exercises are weighed equally unless otherwise stated.

Exercise 1. Let n be an integer. Show that there exists a positive integer A (depending on n) such that for every integer c, prime divisors of $\phi_{n}(c)$ are either smaller than A or congruent to 1 modulo n. (Hint: the cyclotomic polynomial $\phi_{n}(x)$ is coprime to the product of the polynomials $x-1, x^{2}-1, \ldots$, $x^{n-1}-1$ in $\mathbb{Q}[x]$, so the ideal generated by them coincides with $\mathbb{Q}[x]$. Deduce that the ideal generated by those polynomials in $\mathbb{Z}[x]$ contains an integer A, and take it from there.)

Exercise 2. Suppose that A is a set of subsets of \mathbb{N} such that whenever $S_{1}, S_{2} \in \mathrm{~A}$, we have $S_{1} \subseteq S_{2}$ or $S_{2} \subseteq S_{1}$. Is it true that the set A must be countable? (Hint: it is better to identify \mathbb{N} with \mathbb{Q}.)

Exercise 3. Let $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Show that the monoid $\langle A, B\rangle$ generated by A and B under matrix multiplication is the free monoid on two generators. (Hint: Relate this monoid to the CalkinWilf tree.)

Exercise 4. The unique polynomial $T_{n}(x)$ of degree n such that $T_{n}(\cos (\vartheta))=\cos (n \vartheta)$ is the n-th Chebyshev polynomial (of the first kind). The first few Chebyshev polynomials are $T_{0}(x)=1, T_{1}(x)=$ $x, T_{2}(x)=2 x^{2}-1, T_{3}(x)=4 x^{3}-3 x, \ldots$
a) Prove the "multiplicative formula" $T_{m}\left(T_{n}(x)\right)=T_{m n}(x)$.
b) Show that the polynomials $T_{n}(x)$ satisfy the recurrence relation $T_{n}(x)=2 x T_{n-1}(x)-T_{n-2}(x)$ for $n \geq 2$, and deduce that for all $n \geq 1$, we have

$$
T_{n}(x)=\operatorname{det}\left(\begin{array}{cccccccc}
2 x & -1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
-1 & 2 x & -1 & 0 & \cdots & 0 & 0 & 0 \\
0 & -1 & 2 x & -1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & -1 & 2 x & -1 \\
0 & 0 & 0 & 0 & \cdots & 0 & -1 & x
\end{array}\right) .
$$

