Assignment 4
MA341C - Seminar on Proofs from THE BOOK
Trinity College Dublin

Abstract

Name and surname: Student number: Number of pages:

Note: solutions to this assignment are due by llam on Wednesday, October 10th. Please attach a cover sheet with a declaration (http://tcd-ie.libguides.com/plagiarism/declaration) confirming that you know and understand College rules on plagiarism. All exercises are weighed equally unless otherwise stated.

Exercise 1. Let p be a prime number. Determine the number of solutions to the equation $x^{2}+y^{2}=1$ in the prime field \mathbb{Z}_{p}. (Hint: use the fact that the number of solutions to $x^{2}=a$ is expressed via the Legendre symbol as $1+\left(\frac{a}{p}\right)$, and the observation that $1-y^{2}=\frac{1-y}{1+y}(1+y)^{2}$ for $y \neq-1$.)

Exercise 2. Let p be a prime number. Show that for an integer a coprime to p, the Legendre symbol $\left(\frac{a}{p}\right)$ coincides with the sign of the permutation $x \mapsto a x$ of \mathbb{Z}_{p}. (Hint: applying the permutation σ of distinct numbers x_{1}, \ldots, x_{n} to the product of all pairwise differences $x_{i}-x_{j}$ multiplies that product by the sign of σ.)

Exercise 3. Let p be a prime number. Consider the ring \mathbb{H}_{p} of "quaternions modulo p ", that is expressions $a+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}$ where $a, b, c, d \in \mathbb{Z}_{p}$ and $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are quaternionic units that multiply in the usual way. By the theorem from class, \mathbb{H}_{p} cannot be a division ring. Show directly that for any p this ring has zero divisors.

Exercise 4. (a) Let D_{n} denote the group of symmetries of the n-gon in the 2 D plane. Let us position the n-gon in a way that its centre is at the origin of a rectangular coordinate system, and one of its vertices is $(1,0)$. The group D_{n} then has n elements that are rotations σ_{k} through the angle $2 \pi k / n$ for $0 \leq k<n$, and n elements that are reflections ρ_{k} with respect to lines at the angle $\pi(2 k+1) / n$ with the x axis for $0 \leq k<n$. Write down the formula for the result of conjugating σ_{a} with ρ_{b}. (This formula defines the "dihedral quandle", related to colourings of the Borromean link in the talk.)
(b) Counting Fox n-labellings for appropriately chosen n, show that the trefoil knot is not equivalent to the unknotted circle.

