Assignment 3

MA341C — Seminar on Proofs from THE BOOK Trinity College Dublin

NAME AND SURNAME:

Student number:

\qquad NUMBER OF PAGES: \qquad

Note: solutions to this assignment are due by 11am on Wednesday, October 3rd. Please attach a cover sheet with a declaration (http://tcd-ie.libguides.com/plagiarism/declaration) confirming that you know and understand College rules on plagiarism. All exercises are weighed equally unless otherwise stated.

Exercise 1. Consider the number

$$
x=\sum_{n=0}^{\infty} \frac{1}{10^{n!}}
$$

(i) Show that x is irrational.
(ii) Show that x^{2} is irrational.

Exercise 2. Suppose that $\cos \alpha=\frac{3}{5}$. Show that $\frac{\alpha}{\pi}$ is irrational. (Hint: you might want to use that the ring $\mathbb{Z}[i]$ of Gaussian integers is a UFD.)

In the next two questions, $G=(V, E)$ is a finite simple graph.
Exercise 3. The independence number $\alpha(G)$ of G is the maximal number of pairwise nonadjacent vertices in G. Prove the dual version of Turán's Theorem: if G has n vertices and $\frac{n k}{2}$ edges, for $k \geq 1$, then $\alpha(G) \geq \frac{n}{(k+1)}$.

Exercise 4. Denote by $t(G)$ the number of triangles in G. If G has n vertices and m edges, show that

$$
t(G)+t\left(G^{c}\right) \geq\binom{ n}{3}+\frac{2 m^{2}}{n}-m(n-1),
$$

where G^{c} is the complement graph. (Hint: Let t_{i}, for each vertex i of G, be the number of ways to choose two more vertices $\{j, k\}$ so that the vertex i is adjacent to precisely one of them. Find a relationship between $t(G)+t\left(G^{c}\right)$ and $\sum_{i} t_{i}$, and express t_{i} via the degree of the vertex i.)

