Assignment 3

MA341C — Seminar on *Proofs from THE BOOK* Trinity College Dublin

Note: solutions to this assignment are due by 11am on Wednesday, October 3rd. Please attach a cover sheet with a declaration (http://tcd-ie.libguides.com/plagiarism/declaration) confirming that you know and understand College rules on plagiarism. All exercises are weighed equally unless otherwise stated.

Exercise 1. Consider the number

$$x = \sum_{n=0}^{\infty} \frac{1}{10^{n!}} \, .$$

(i) Show that *x* is irrational.

(ii) Show that x^2 is irrational.

Exercise 2. Suppose that $\cos \alpha = \frac{3}{5}$. Show that $\frac{\alpha}{\pi}$ is irrational. (*Hint*: you might want to use that the ring $\mathbb{Z}[i]$ of Gaussian integers is a UFD.)

In the next two questions, G = (V, E) is a finite simple graph.

Exercise 3. The independence number $\alpha(G)$ of *G* is the maximal number of pairwise nonadjacent vertices in *G*. Prove the dual version of Turán's Theorem: if *G* has *n* vertices and $\frac{nk}{2}$ edges, for $k \ge 1$, then $\alpha(G) \ge \frac{n}{(k+1)}$.

Exercise 4. Denote by t(G) the number of triangles in *G*. If *G* has *n* vertices and *m* edges, show that

$$t(G) + t(G^c) \ge {n \choose 3} + \frac{2m^2}{n} - m(n-1),$$

where G^c is the complement graph. (*Hint*: Let t_i , for each vertex i of G, be the number of ways to choose two more vertices $\{j, k\}$ so that the vertex i is adjacent to precisely one of them. Find a relationship between $t(G) + t(G^c)$ and $\sum_i t_i$, and express t_i via the degree of the vertex i.)