Assignment 10 MA341C — Seminar on *Proofs from THE BOOK* Trinity College Dublin

Note: solutions to this assignment are due by 11am on Wednesday, November 28th. Please attach a cover sheet with a declaration (http://tcd-ie.libguides.com/plagiarism/declaration) confirming that you know and understand College rules on plagiarism. All exercises are weighed equally unless otherwise stated.

Exercise 1. Prove the identity $\sum_{i=0}^{k} \binom{n}{i} \binom{m}{k-i} = \binom{n+m}{k}$. Deduce that $\binom{2n}{n}$ is a sum of n+1 squares.

Exercise 2. A convex polygon *P* has all its vertices on the integer grid in \mathbb{R}^2 , and no side of *P* is a grid line. Prove that the sum of lengths of horizontal grid lines inside *P* is equal to the sum of lengths of vertical grid lines inside *P*.

Exercise 3. Let *G* be a simple planar graph with 11 vertices. Show that its complement G^c is non-planar.

Exercise 4. In this question, we consider graphs embedded in \mathbb{R}^2 in such a way that edges may intersect, but the number of intersection points is finite, and each edge only contains the two vertices it is adjacent to.

- 1. For two graphs *G* and *H* in \mathbb{R}^2 such that no edge of either of them contains any vertices of the other, we define in(*G*, *H*) to be the modulo 2 class of the number of intersection points between edges of *G* and edges of *H*. Prove that in(*G*, *H*) = 0 if G and H are cycles. (*Hint*: use the Jordan curve theorem.)
- 2. The self-intersection number in(G) is the modulo 2 class of the number of intersections between edges of *G* at their interior points (so that intersections of adjacent edges do not count). Suppose that for any edge *e* of *G*, the edges not adjacent to *e* form a cycle. Show that in this case in(G) does not depend on the way *G* is embedded in the plane.
- 3. Show that $K_{3,3}$ and K_5 satisfy the condition of the previous question, and then conclude they are not planar by computing their self intersection number.