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Note: solutions to this assignment are due by 11am on Wednesday, November 28th. Please attach a cover sheet with a declara-

tion (http://tcd-ie.libguides.com/plagiarism/declaration) confirming that you know and understand College rules on

plagiarism. All exercises are weighed equally unless otherwise stated.

Exercise 1. Prove the identity
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. Deduce that
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is a sum of n +1 squares.

Exercise 2. A convex polygon P has all its vertices on the integer grid in R2, and no side of P is a grid

line. Prove that the sum of lengths of horizontal grid lines inside P is equal to the sum of lengths of

vertical grid lines inside P .

Exercise 3. Let G be a simple planar graph with 11 vertices. Show that its complement Gc is non-

planar.

Exercise 4. In this question, we consider graphs embedded in R2 in such a way that edges may inter-

sect, but the number of intersection points is finite, and each edge only contains the two vertices it is

adjacent to.

1. For two graphs G and H in R2 such that no edge of either of them contains any vertices of the

other, we define in(G , H) to be the modulo 2 class of the number of intersection points between

edges of G and edges of H . Prove that in(G , H) = 0 if G and H are cycles. (Hint: use the Jordan

curve theorem.)

2. The self-intersection number in(G) is the modulo 2 class of the number of intersections between

edges of G at their interior points (so that intersections of adjacent edges do not count). Suppose

that for any edge e of G , the edges not adjacent to e form a cycle. Show that in this case in(G)

does not depend on the way G is embedded in the plane.

3. Show that K3,3 and K5 satisfy the condition of the previous question, and then conclude they are

not planar by computing their self intersection number.
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