
MA 3419: Galois theory
Selected answers/solutions to the assignment due November 28, 2017

1. (a) Note that this polynomial is irreducible (Eisenstein for p = 2). Also, we note that
f(100) > 0, f(1) = −1 < 0, f(−1) = 5 > 0, f(−100) < 0, so this polynomial has at least three
real roots, and f ′(x) = 5x4 − 4, so this polynomial has two extrema, which means that it
cannot have more than three roots. Thus, two of the roots are complex conjugate, and hence
the Galois group contains a transposition (induced by the complex conjugation). We know
from class that a transitive subgroup of S5 (transitivity follows from irreducibility) containing
a transposition must coincide with S5.

(b) This polynomial is irreducible (Eisenstein for p = 2 again), and f(100) > 0,
f(1) = −1 < 0, f(−100) > 0, so there are at least two real roots. Also, f ′(x) = 4x3 − 4, so
the only extremal point is at x = 1. This means that this polynomial cannot have more than
two roots. Thus, two of the root are complex conjugate, and the Galois group contains a
transposition. Two only transitive subgroups of S4 containing a transposition are D4 and S4.

Let a1, a2, a3, a4 be the roots of this polynomial; consider, as we discussed in class in the
beginning of this semester, the quantities x1, x2, x3 determined by

2a1 = x1 + x2 + x3,

2a2 = x1 − x2 − x3,

2a3 = −x1 + x2 − x3,

2a4 = −x1 − x2 + x3.

We have
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Thus, x21, x
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3 are roots of the polynomial

t3 − 8t− 16 = 0.

This polynomial is irreducible over rational numbers because it has no rational roots. This
means that the splitting field contains a subfield of degree 3, and hence the cardinality of the
Galois group is divisible by 3, which rules out the case of D4. Therefore the Galois group is
S4.

2. Without loss of generality, the cycle is (123). By transitivity, each element 1,2,3,4,5
is involved in at least one 3-cycle, so there is another 3-cycle involving at least one other
element. Without loss of generality, that cycle is (124) or (145). In the latter case,
(145)(123)(145)−1 = (234). Thus, our subgroup contains either the subgroup generated by
(123) and (124) or the subgroup generated by (123) and (234). These subgroups are clearly
transitive on {1, 2, 3, 4}. Note that a group that acts transitively on a set of n elements has
cardinality divisible by n, since the cardinality of an orbit of x is the index of the stabiliser
of x. Therefore, the cardinality of our subgroup is divisible by 3 (as it contains a 3-cycle), by
4 (as its subgroup acts transitively on a 4-element set), and by 5 (since it acts transitively



on a 5-element set), which means that it is divisible by 3 · 4 · 5 = 60, which is already the
cardinality of A5.

3. (a) Without loss of generality the n-cycle is σ = (1, 2, . . . , n), and the transposition is
(i, j) for some 1 6 i < j 6 n. There exists k < n for which τ = σk satisfies τ(i) = j; note that
since n is prime, the element τ is also an n-cycle. Consider the permutation µ = τ · (ij). We
have µ(j) = j, and all other elements are permuted cyclically, so µ is an (n − 1)-cycle, and a
result from class applies. (The subgroup is transitive because it contains σ.)

(b) In case of S4, the subgroup D4 satisfies this property.
4. The polynomial x(x− 1) · · · (x− (p− 4)) has p− 3 simple roots, each of which is close

to one simple root of
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Also, there is one simple root close to Np, since
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This already gives p− 2 roots. If there were more roots, there would be p of them, and there
will be at least one root different from the roots we found (possibly with multiplicity 2). Then
by Rolle theorem, the derivative of this polynomial would have at least p− 2 different roots,
. . . , the p− 3-rd derivative would have at least 2 different roots. But that derivative is of the
form Ax3−B, which has just one real root. This implies that the Galois group of the splitting
field of this polynomial contains a transposition (corresponding to the complex conjugation).
Also, by Eisenstein this polynomial is irreducible, so the Galois group is a transitive subgroup
of Sp. The number of elements in the orbit, that is p, divides the order of the subgroup,
which divides the order of Sp, that is p!, so the maximal power of p dividing the order of the
subgroup is p, and by Sylow’s theorem it contains a subgroup of order p. The only elements
of order p in Sp are p-cycles, and the previous problem applies.

5. (a) Note that [L : K] = p2, since we adjoin two p-th roots. (The polynomial tp − x
is irreducible over K, and the polynomial tp − y is irreducible over K( p

√
x), by Eisenstein).

However, it is clear by direct inspection that for each element of a ∈ L, we have ap ∈ K, so
K(a) generates an extension of degree at most p.
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6. (a) First of all, an extension of a field K has the same characteristic as K, so p = p ′.
Also, an extension of a field K is a vector space over K, so an extension of Fq has qm elements,
where m is the dimension of the extension as a vector space over Fq. Thus, pn = (pn

′
)m, and

n = n ′m.
(b) We know that Fpn is the splitting field of xp

n
− x over Fp, so it is normal. It is

manifestly an extension of a finite degree n. Finally, an extension of finite fields is always
separable.

(c) We have (xy)p = xpyp, and (x + y)p = xp + yp (the latter because we are in charac-

teristic p), so x 7→ xp is an automorphism. The k-th power of it is x 7→ xp
k
, which is different

from x 7→ x for k < n, since the multiplicative group of Fpn is cyclic, and therefore contains

an element of order pn − 1; for such an element η, we have ηp
k 6= η for k < n. A Galois

extension has a Galois group of order equal to the degree, so we found all automorphisms.



(d) If n is divisible by n ′, then every root of xp
n ′

− x is a root of xp
n
− x, since pn − 1 is

divisible by pn
′
− 1, therefore there is inclusion between splitting fields.

(e) As before, it is normal and separable and finite. The Galois group is the group of all

elements fixing Fpn ′ , that is the subgroup generated by x 7→ xp
n ′

. This subgroup is isomorphic
to Z/(n/n ′)Z. A Galois extension has a Galois group of order equal to the degree, so we
found all automorphisms.


