MA 3419: Galois theory
Selected answers/solutions to the assignment due November 14, 2017

1. The multiplicative group $(\mathbb{Z} / 13 \mathbb{Z})^{\times}$is cyclic generated by 2 ; the powers of 2 modulo 13 are, in the order of the exponent, $1,2,4,8,3,6,12,11,9,5,10,7$. Thus, denoting by ξ the primitive root $e^{2 \pi / 13}$ of unity of degree 13 , we may consider the quantities

$$
\begin{aligned}
& A=\xi+\xi^{4}+\xi^{3}+\xi^{12}+\xi^{9}+\xi^{10} \\
& A^{\prime}=\xi^{2}+\xi^{8}+\xi^{6}+\xi^{11}+\xi^{5}+\xi^{7}
\end{aligned}
$$

Clearly, $A+A^{\prime}=-1$, and $A A^{\prime}=-3$, so A and A^{\prime} are roots of the quadratic equation $x^{2}+x-3=0$. Next, we consider the quantities

$$
\begin{aligned}
\mathrm{B} & =\xi+\xi^{12} \\
\mathrm{~B}^{\prime} & =\xi^{4}+\xi^{9} \\
\mathrm{~B}^{\prime \prime} & =\xi^{3}+\xi^{10} .
\end{aligned}
$$

We have $B+B^{\prime}+B^{\prime \prime}=A, B B^{\prime}+B B^{\prime \prime}+B^{\prime} B^{\prime \prime}=-1, B B^{\prime} B^{\prime \prime}=2+A^{\prime}$, so B, B^{\prime}, and $B^{\prime \prime}$ are roots of a cubic equation with coefficients of $\mathbb{Q}\left(A, A^{\prime}\right)$. Clearly, $\xi+\xi^{12}=\xi+\xi^{-1}=2 \cos (2 \pi / 13)$.
2. Roots of $x^{3}-5$ are $\sqrt[3]{5}, \omega \sqrt[3]{5}, \omega^{2} \sqrt[3]{5}$, where ω is a primitive cube root of 1 . Thus, the splitting field of $\chi^{3}-5$ over $\mathbb{Q}(\sqrt{2})$ is $\mathbb{Q}(\sqrt[3]{5}, \omega, \sqrt{2})$. Note that $\omega \notin \mathbb{Q}(\sqrt{2})$ since ω is not real, so $[\mathbb{Q}(\omega, \sqrt{2}): \mathbb{Q}]=4$ by Tower Law. Also, $\mathbb{Q}(\sqrt[3]{5}, \omega, \sqrt{2})$ contains a subfield $\mathbb{Q}(\sqrt[3]{5})$ of degree 3 (since $x^{3}-5$ is irreducible by Eisenstein), so $[\mathbb{Q}(\sqrt[3]{5}, \omega, \sqrt{2})$: $\mathbb{Q}]$ is divisible by 3. Since $[\mathbb{Q}(\sqrt[3]{5}, \omega, \sqrt{2}): \mathbb{Q}] \leqslant 12$, these observations show that $[\mathbb{Q}(\sqrt[3]{5}, \omega, \sqrt{2}): \mathbb{Q}]=12$, and that the elements $\sqrt{2}^{i} \omega^{j} \sqrt[3]{5}^{k}$ with $0 \leqslant i \leqslant 1,0 \leqslant j \leqslant 1$, and $0 \leqslant k \leqslant 2$ form a basis over \mathbb{Q}. Consequently, the elements $\omega^{j} \sqrt[3]{5}^{k}$ with $0 \leqslant j \leqslant 1$, and $0 \leqslant k \leqslant 2$ form a basis over $\mathbb{Q}(\sqrt{2})$. Any automorphism sends ω to ω or ω^{2}, and $\sqrt[3]{5}$ to $\omega^{k} \sqrt[3]{5}$, where $0 \leqslant k \leqslant 2$, so there are six automorphisms, as expected (it is the degree of the extension). The group generated by these is S_{3}, as one can note from their action on the elements $x_{i}=\omega^{i+1} \sqrt[3]{5}, \mathfrak{i}=1,2,3$.
3. We have $x^{4}-2 x^{2}-5=x^{4}-2 x^{2}+1-6=\left(x^{2}-1\right)^{2}-6=\left(x^{2}-1-\sqrt{6}\right)\left(x^{2}-1+\sqrt{6}\right)$. This means that the roots of this polynomial are $\pm \sqrt{1+\sqrt{6}}$ and $\pm \sqrt{1-\sqrt{6}}= \pm \frac{\sqrt{-5}}{\sqrt{1+\sqrt{6}}}$, so the splitting field is $\mathbb{Q}(\sqrt{1+\sqrt{6}}, \sqrt{-5})$.

Let us show that $1+\sqrt{6}$ is not a square in $\mathbb{Q}(\sqrt{6})$. If it were, we would have $(a+b \sqrt{6})^{2}=1+\sqrt{6}$ for some rational a, b, or $a^{2}+6 b^{2}=1,2 a b=1$. This means that $\frac{1}{4 \mathrm{~b}^{2}}+6 \mathrm{~b}^{2}=1$. Clearing the denominator, $24 \mathrm{~b}^{4}-4 \mathrm{~b}^{2}+1=0$, and this does not have real roots, let alone rational ones.

Therefore, $[\mathbb{Q}(\sqrt{1+\sqrt{6}}): \mathbb{Q}]=4$. Finally, $\sqrt{-5} \notin \mathbb{Q}(\sqrt{1+\sqrt{6}})$ since it is not a real number, so $[\mathbb{Q}(\sqrt{1+\sqrt{6}}, \sqrt{-5}): \mathbb{Q}(\sqrt{1+\sqrt{6}})]=2$. By Tower Law, $[\mathbb{Q}(\sqrt{1+\sqrt{6}}, \sqrt{-5}): \mathbb{Q}]=8$.

Note that our extension is a Galois extension, so its Galois group contains 8 elements. Each of these elements sends $\sqrt{1+\sqrt{6}}$ to one of the four roots of this polynomial, and $\sqrt{-5}$ to $\pm \sqrt{-5}$; this data defines an automorphism completely, and this gives at most 8 distinct automorphisms. Thus, each of these is a well defined automorphisms. If we define an automorphism σ by letting $\sigma(\sqrt{1+\sqrt{6}})=\frac{\sqrt{-5}}{\sqrt{1+\sqrt{6}}}, \sigma(\sqrt{-5})=-\sqrt{-5}$, and $\tau(\sqrt{1+\sqrt{6}})=\sqrt{1+\sqrt{6}}$,
$\tau(\sqrt{-5})=-\sqrt{-5}$, then we have

$$
\begin{gathered}
\sigma^{2}(\sqrt{1+\sqrt{6}})=\sigma\left(\frac{\sqrt{-5}}{\sqrt{1+\sqrt{6}}}\right)=\frac{-\sqrt{-5}}{\frac{\sqrt{-5}}{\sqrt{1+\sqrt{6}}}}=-\sqrt{1+\sqrt{6}}, \quad \sigma^{2}(\sqrt{-5})=\sqrt{-5}, \\
\sigma^{3}(\sqrt{1+\sqrt{6}})=\sigma\left(\sigma^{2}(\sqrt{1+\sqrt{6}})\right)=-\sigma(\sqrt{1+\sqrt{6}})=-\frac{\sqrt{-5}}{\sqrt{1+\sqrt{6}}}, \quad \sigma^{3}(\sqrt{-5})=-\sqrt{-5},
\end{gathered}
$$

and finally

$$
\sigma^{4}(\sqrt{1+\sqrt{6}})=\sigma\left(\sigma^{3}(\sqrt{1+\sqrt{6}})\right)=\sigma\left(-\frac{\sqrt{-5}}{\sqrt{1+\sqrt{6}}}\right)=\frac{\sqrt{-5}}{\frac{\sqrt{-5}}{\sqrt{1+\sqrt{6}}}}=\sqrt{1+\sqrt{6}}, \quad \sigma^{4}(\sqrt{-5})=\sqrt{-5},
$$

so $\sigma^{4}=e$. Also, we have $\tau^{2}=e$. Finally,

$$
\tau \sigma^{3}(\sqrt{1+\sqrt{6}})=\tau\left(-\frac{\sqrt{-5}}{\sqrt{1+\sqrt{6}}}\right)=\frac{\sqrt{-5}}{\sqrt{1+\sqrt{6}}}=\sigma \tau(\sqrt{1+\sqrt{6}})
$$

and $\tau \sigma^{3}(\sqrt{-5})=\sqrt{-5}=\sigma \tau(\sqrt{-5})$. This means that $\sigma \tau=\tau \sigma^{3}$, and altogether σ and τ generate the dihedral group D_{4} of 8 elements, which is therefore the Galois group.
4. The splitting field of f is $\mathbb{Q}(\sqrt[4]{2}, i)$, by a standard argument it is a field of degree 8 . Each Galois group element is completely determined by the action on $\sqrt[4]{2}$ and on $i: \sqrt[4]{2}$ is sent to $\mathfrak{i} \sqrt[4]{2}$, and \mathfrak{i} is sent to $\pm i$. If we consider in the complex plane the square formed by the roots of $x^{4}-2$, then the Galois group action on the roots is manifestly the dihedral group D_{4} action by symmetries of that square: the element σ for which $\sigma(\sqrt[4]{2})=\mathfrak{i} \sqrt[4]{2}, \sigma(\mathfrak{i})=\mathfrak{i}$, implements the rotation of the square, while the element τ for which $\tau(\sqrt[4]{2})=\sqrt[4]{2}, \tau(i)=-i$ implements the reflection about the diagonal.

Subgroups of D_{4} are: four subgroups generated by the reflections $\tau, \sigma \tau, \sigma^{2} \tau, \sigma^{3} \tau$, the subgroup of order 2 generated by σ^{2}, the subgroup of order 4 generated by σ, and the two Klein 4 -groups generated by σ^{2} and τ and by σ^{2} and $\sigma \tau$. The invariant subfield of the subgroup generated by σ^{2} and τ is $\mathbb{Q}(\sqrt{2})$, the invariant subfield of the subgroup generated by σ^{2} and $\sigma \tau$ is $\mathbb{Q}(i \sqrt{2})$, the invariant subfield of the subgroup generated by σ is $\mathbb{Q}(i)$, the invariant subfield of the subgroup generated by σ^{2} is $\mathbb{Q}(\sqrt{2}, \mathfrak{i})$, the invariant subfield of the subgroup generated by τ is $\mathbb{Q}(\sqrt[4]{2})$, the invariant subfield of the subgroup generated by $\sigma \tau$ is $\mathbb{Q}((1+i) \sqrt[4]{2})$, the invariant subfield of the subgroup generated by $\sigma^{2} \tau$ is $\mathbb{Q}(i \sqrt[4]{2})$, the invariant subfield of the subgroup generated by $\sigma^{3} \tau$ is $\mathbb{Q}((1-i) \sqrt[4]{2})$.

Some remarks on finding invariant subfields: If $k \subset F \subset K$ is a tower where $k \subset K$ is a Galois extension, then we know that $F \subset K$ is a Galois extension too. Thus, $\# \operatorname{Gal}(\mathrm{~K}: \mathrm{k})=[\mathrm{K}: \mathrm{k}]$, $\# \operatorname{Gal}(\mathrm{~K}: \mathrm{F})=[\mathrm{K}: \mathrm{F}]$, so by Tower Law $[\mathrm{F}: \mathrm{K}]$ is the index of the subgroup $\operatorname{Gal}(\mathrm{K}: \mathrm{F})$ of the group $\operatorname{Gal}(\mathrm{K}: \mathrm{k})$. Therefore, two-element subgroups correspond to degree four extensions, and the four-element subgroups correspond to quadratic extensions. Now, some of the extensions above are fixed by the corresponding subgroups by direct inspection of definitions of σ and τ. Some, like $\mathbb{Q}((1+i) \sqrt[4]{2})$, are obtained as follows: the element $\lambda=\sigma \tau$ is of order 2 , so for each a, the element $a+\lambda(a)$ is λ-invariant, since $\lambda(a+\lambda(a))=\lambda(a)+\lambda^{2}(a)=\lambda(a)+a$. Taking $a=\sqrt[4]{2}$, we get the element $u=(1+i) \sqrt[4]{2}$. It generates a degree 4 extension, since $u^{4}=-8$, and the polynomial $\chi^{4}+8$ is irreducible: its roots are $\mathfrak{u}, \mathfrak{i u},-\mathfrak{u},-\mathfrak{i u}$, and no product of fewer than four of those can give a rational number.

The normal extensions of \mathbb{Q} are, by Galois correspondence, those corresponding to normal subgroups. Any subgroup of index 2 is normal; these correspond to quadratic extensions which are also always normal. The only subgroup of order 2 which is normal is the subgroup generated by σ^{2}; that subgroup is the centre of D_{4}. The corresponding subfield is $\mathbb{Q}(\sqrt{2}, i)$ which is the splitting field of $\left(x^{2}-2\right)\left(x^{2}+1\right)$, so a normal extension indeed.
5. In \mathbb{F}_{5}, we have $3^{2} \neq 1,3^{4}=1$. This means that the element $x=\sqrt[4]{3}$ in the splitting field of $x^{4}-3$ is of order 16 in the multiplicative group of that field. That splitting field is of characteristic 5 , so its multiplicative group has $5^{k}-1$ elements, where k is the degree of the extension. By Lagrange's theorem, 16 divides $5^{k}-1$, so $k \neq 1,2,3$, thus $k \geqslant 4$. Also, \mathbb{F}_{5} has four distinct fourth roots of 1 , so adjoining one root of $x^{4}-3$ gives the splitting field. This implies that $x^{4}-3$ is irreducible, and that the Galois group is the cyclic group of order 4 of fourth roots of 1 in \mathbb{F}_{5}.

In \mathbb{F}_{7}, we have $3^{6}=1,3^{k} \neq 1$ for $0<k<6$. This means that the element $x=\sqrt[4]{3}$ in the splitting field of $x^{4}-3$ is of order 24 in the multiplicative group of that field. That splitting field is of characteristic 7 , so its multiplicative group has $7^{\mathrm{k}}-1$ elements, where k is the degree of the extension. Thus, it is possible that $k=2$ would work. Let us consider the quadratic extension $\mathbb{F}_{7}(\sqrt{3})$. In this extension, $\sqrt{3}$ is in fact a square, since $(a+b \sqrt{3})^{2}=\sqrt{3}$ has a solution $\mathrm{a}=1, \mathrm{~b}=4$. Also, in that extension, $(3 \sqrt{3})^{2}=27=-1$, so that extension has four distinct fourth roots of $-1: \pm 1$ and $\pm 3 \sqrt{3}$. We conclude that the splitting field is \mathbb{F}_{49} and the Galois group is the cyclic group of order 2.

In \mathbb{F}_{11}, we have $3^{5}=1,3^{k} \neq 1$ for $0<k<5$. This means that the element $x=\sqrt[4]{3}$ in the splitting field of $x^{4}-3$ is of order 20 in the multiplicative group of that field. That splitting field is of characteristic 11 , so its multiplicative group has $11^{k}-1$ elements, where k is the degree of the extension. Thus, it is possible that $k=2$ would work. Note that $5^{2}=25=3$ in \mathbb{F}_{11}, so $\mathbb{F}_{11}(\sqrt[4]{3})$ is a quadratic extension. All fields of 121 elements are isomorphic, so that extension also contains $i=\sqrt{-1}$, and hence the four distinct fourth roots of 1 . We conclude that the splitting field is \mathbb{F}_{121} and the Galois group is the cyclic group of order 2.

Over \mathbb{F}_{13}, our polynomial splits: $x^{4}-3=(x-2)(x+2)(x-3)(x+3)$, so the splitting field is \mathbb{F}_{13}, and the Galois group is trivial.
6. $K=k(a)$ if and only if $k(a)$ is not a proper subfield of K, which happens if and only if it is not a fixed field of a nontrivial subgroup of G, which happens if and only if the only element which fixes a is e, which happens if and only if $g_{1}(a), \ldots, g_{n}(a)$ are distinct elements of K.

