
MA 3419: Galois theory
Selected answers/solutions to the assignment due November 14, 2017

1. The multiplicative group (Z/13Z)× is cyclic generated by 2; the powers of 2 modulo
13 are, in the order of the exponent, 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10, 7. Thus, denoting by ξ the
primitive root e2π/13 of unity of degree 13, we may consider the quantities

A = ξ+ ξ4 + ξ3 + ξ12 + ξ9 + ξ10,

A ′ = ξ2 + ξ8 + ξ6 + ξ11 + ξ5 + ξ7.

Clearly, A + A ′ = −1, and AA ′ = −3, so A and A ′ are roots of the quadratic equation
x2 + x− 3 = 0. Next, we consider the quantities

B = ξ+ ξ12,

B ′ = ξ4 + ξ9,

B ′′ = ξ3 + ξ10.

We have B+B ′+B ′′ = A, BB ′+BB ′′+B ′B ′′ = −1, BB ′B ′′ = 2+A ′, so B, B ′, and B ′′ are roots
of a cubic equation with coefficients of Q(A,A ′). Clearly, ξ+ ξ12 = ξ+ ξ−1 = 2 cos(2π/13).

2. Roots of x3 − 5 are 3
√
5, ω 3

√
5, ω2 3

√
5, where ω is a primitive cube root of 1. Thus,

the splitting field of x3 − 5 over Q(
√
2) is Q( 3

√
5,ω,

√
2). Note that ω /∈ Q(

√
2) since ω is

not real, so [Q(ω,
√
2) : Q] = 4 by Tower Law. Also, Q( 3

√
5,ω,

√
2) contains a subfield Q( 3

√
5)

of degree 3 (since x3 − 5 is irreducible by Eisenstein), so [Q( 3
√
5,ω,

√
2) : Q] is divisible by

3. Since [Q( 3
√
5,ω,

√
2) : Q] 6 12, these observations show that [Q( 3

√
5,ω,

√
2) : Q] = 12, and

that the elements
√
2
i
ωj

3
√
5
k

with 0 6 i 6 1, 0 6 j 6 1, and 0 6 k 6 2 form a basis over Q.

Consequently, the elements ωj 3
√
5
k

with 0 6 j 6 1, and 0 6 k 6 2 form a basis over Q(
√
2).

Any automorphism sends ω to ω or ω2, and 3
√
5 to ωk 3

√
5, where 0 6 k 6 2, so there are

six automorphisms, as expected (it is the degree of the extension). The group generated by
these is S3, as one can note from their action on the elements xi = ω

i+1 3
√
5, i = 1, 2, 3.

3. We have x4 − 2x2 − 5 = x4 − 2x2 + 1− 6 = (x2 − 1)2 − 6 = (x2 − 1−
√
6)(x2 − 1+

√
6).

This means that the roots of this polynomial are ±
√
1+
√
6 and ±

√
1−
√
6 = ±

√
−5√
1+
√
6
, so

the splitting field is Q(
√
1+
√
6,
√
−5).

Let us show that 1 +
√
6 is not a square in Q(

√
6). If it were, we would have

(a + b
√
6)2 = 1 +

√
6 for some rational a, b, or a2 + 6b2 = 1, 2ab = 1. This means

that 1
4b2

+ 6b2 = 1. Clearing the denominator, 24b4 − 4b2 + 1 = 0, and this does not have
real roots, let alone rational ones.

Therefore, [Q(
√
1+
√
6) : Q] = 4. Finally,

√
−5 /∈ Q(

√
1+
√
6) since it is not a real num-

ber, so [Q(
√
1+
√
6,
√
−5) : Q(

√
1+
√
6)] = 2. By Tower Law, [Q(

√
1+
√
6,
√
−5) : Q] = 8.

Note that our extension is a Galois extension, so its Galois group contains 8 elements.

Each of these elements sends
√
1+
√
6 to one of the four roots of this polynomial, and

√
−5

to ±
√
−5; this data defines an automorphism completely, and this gives at most 8 distinct

automorphisms. Thus, each of these is a well defined automorphisms. If we define an automor-

phism σ by letting σ(
√
1+
√
6) =

√
−5√
1+
√
6
, σ(
√
−5) = −

√
−5, and τ(

√
1+
√
6) =

√
1+
√
6,



τ(
√
−5) = −

√
−5, then we have

σ2(

√
1+
√
6) = σ(

√
−5√

1+
√
6
) =

−
√
−5

√
−5√
1+
√
6

= −

√
1+
√
6, σ2(

√
−5) =

√
−5,

σ3(

√
1+
√
6) = σ(σ2(

√
1+
√
6)) = −σ(

√
1+
√
6) = −

√
−5√

1+
√
6
, σ3(

√
−5) = −

√
−5,

and finally

σ4(

√
1+
√
6) = σ(σ3(

√
1+
√
6)) = σ(−

√
−5√

1+
√
6
) =

√
−5
√
−5√
1+
√
6

=

√
1+
√
6, σ4(

√
−5) =

√
−5,

so σ4 = e. Also, we have τ2 = e. Finally,

τσ3(

√
1+
√
6) = τ(−

√
−5√

1+
√
6
) =

√
−5√

1+
√
6
= στ(

√
1+
√
6)

and τσ3(
√
−5) =

√
−5 = στ(

√
−5). This means that στ = τσ3, and altogether σ and τ

generate the dihedral group D4 of 8 elements, which is therefore the Galois group.
4. The splitting field of f is Q( 4

√
2, i), by a standard argument it is a field of degree 8.

Each Galois group element is completely determined by the action on 4
√
2 and on i: 4

√
2 is

sent to il 4
√
2, and i is sent to ±i. If we consider in the complex plane the square formed by

the roots of x4−2, then the Galois group action on the roots is manifestly the dihedral group
D4 action by symmetries of that square: the element σ for which σ( 4

√
2) = i

4
√
2, σ(i) = i,

implements the rotation of the square, while the element τ for which τ( 4
√
2) = 4

√
2, τ(i) = −i

implements the reflection about the diagonal.
Subgroups of D4 are: four subgroups generated by the reflections τ, στ, σ2τ, σ3τ, the

subgroup of order 2 generated by σ2, the subgroup of order 4 generated by σ, and the two
Klein 4-groups generated by σ2 and τ and by σ2 and στ. The invariant subfield of the
subgroup generated by σ2 and τ is Q(

√
2), the invariant subfield of the subgroup generated

by σ2 and στ is Q(i
√
2), the invariant subfield of the subgroup generated by σ is Q(i), the

invariant subfield of the subgroup generated by σ2 is Q(
√
2, i), the invariant subfield of the

subgroup generated by τ is Q( 4
√
2), the invariant subfield of the subgroup generated by στ is

Q((1+i) 4
√
2), the invariant subfield of the subgroup generated by σ2τ is Q(i 4

√
2), the invariant

subfield of the subgroup generated by σ3τ is Q((1− i) 4
√
2).

Some remarks on finding invariant subfields: If k ⊂ F ⊂ K is a tower where k ⊂ K is a Ga-
lois extension, then we know that F ⊂ K is a Galois extension too. Thus, # Gal(K : k) = [K : k],
# Gal(K : F) = [K : F], so by Tower Law [F : k] is the index of the subgroup Gal(K : F) of the
group Gal(K : k). Therefore, two-element subgroups correspond to degree four extensions, and
the four-element subgroups correspond to quadratic extensions. Now, some of the extensions
above are fixed by the corresponding subgroups by direct inspection of definitions of σ and τ.
Some, like Q((1+ i) 4

√
2), are obtained as follows: the element λ = στ is of order 2, so for each

a, the element a + λ(a) is λ-invariant, since λ(a + λ(a)) = λ(a) + λ2(a) = λ(a) + a. Taking
a = 4
√
2, we get the element u = (1+ i) 4

√
2. It generates a degree 4 extension, since u4 = −8,

and the polynomial x4 + 8 is irreducible: its roots are u, iu, −u, −iu, and no product of
fewer than four of those can give a rational number.



The normal extensions of Q are, by Galois correspondence, those corresponding to normal
subgroups. Any subgroup of index 2 is normal; these correspond to quadratic extensions
which are also always normal. The only subgroup of order 2 which is normal is the subgroup
generated by σ2; that subgroup is the centre of D4. The corresponding subfield is Q(

√
2, i)

which is the splitting field of (x2 − 2)(x2 + 1), so a normal extension indeed.
5. In F5, we have 32 6= 1, 34 = 1. This means that the element x = 4

√
3 in the splitting

field of x4 − 3 is of order 16 in the multiplicative group of that field. That splitting field is of
characteristic 5, so its multiplicative group has 5k − 1 elements, where k is the degree of the
extension. By Lagrange’s theorem, 16 divides 5k − 1, so k 6= 1, 2, 3, thus k > 4. Also, F5 has
four distinct fourth roots of 1, so adjoining one root of x4 − 3 gives the splitting field. This
implies that x4 − 3 is irreducible, and that the Galois group is the cyclic group of order 4 of
fourth roots of 1 in F5.

In F7, we have 36 = 1, 3k 6= 1 for 0 < k < 6. This means that the element x = 4
√
3

in the splitting field of x4 − 3 is of order 24 in the multiplicative group of that field. That
splitting field is of characteristic 7, so its multiplicative group has 7k− 1 elements, where k is
the degree of the extension. Thus, it is possible that k = 2 would work. Let us consider the
quadratic extension F7(

√
3). In this extension,

√
3 is in fact a square, since (a+ b

√
3)2 =

√
3

has a solution a = 1, b = 4. Also, in that extension, (3
√
3)2 = 27 = −1, so that extension

has four distinct fourth roots of −1: ±1 and ±3
√
3. We conclude that the splitting field is

F49 and the Galois group is the cyclic group of order 2.
In F11, we have 35 = 1, 3k 6= 1 for 0 < k < 5. This means that the element x = 4

√
3 in the

splitting field of x4 − 3 is of order 20 in the multiplicative group of that field. That splitting
field is of characteristic 11, so its multiplicative group has 11k − 1 elements, where k is the
degree of the extension. Thus, it is possible that k = 2 would work. Note that 52 = 25 = 3

in F11, so F11( 4
√
3) is a quadratic extension. All fields of 121 elements are isomorphic, so that

extension also contains i =
√
−1, and hence the four distinct fourth roots of 1. We conclude

that the splitting field is F121 and the Galois group is the cyclic group of order 2.
Over F13, our polynomial splits: x4− 3 = (x− 2)(x+ 2)(x− 3)(x+ 3), so the splitting field

is F13, and the Galois group is trivial.
6. K = k(a) if and only if k(a) is not a proper subfield of K, which happens if and only

if it is not a fixed field of a nontrivial subgroup of G, which happens if and only if the only
element which fixes a is e, which happens if and only if g1(a), . . . , gn(a) are distinct elements
of K.


