MA 3419: Galois theory
Selected answers/solutions to the assignment due October 31, 2017

1. We have $\alpha=\beta^{3}-\beta$, and $\alpha^{3}-\alpha-1=0$. Substituting the expression for α, we obtain $\left(\beta^{3}-\beta\right)^{3}-\left(\beta^{3}-\beta\right)-1=0$, or $\beta^{9}-3 \beta^{7}+3 \beta^{5}-2 \beta^{3}+\beta-1=0$.

An alternative solution (which is better for more general problems): let $\alpha_{1}, \alpha_{2}, \alpha_{3}$ be all the three roots of $x^{3}-x-1$. We consider the polynomial

$$
\left(x^{3}-x-\alpha_{1}\right)\left(x^{3}-x-\alpha_{2}\right)\left(x^{3}-x-\alpha_{3}\right),
$$

expand it, and use the Vieta theorem according to which

$$
\begin{gathered}
\alpha_{1}+\alpha_{2}+\alpha_{3}=0 \\
\alpha_{1} \alpha_{2}+\alpha_{1} \alpha_{3}+\alpha_{2} \alpha_{3}=-1 \\
\alpha_{1} \alpha_{2} \alpha_{3}=1 .
\end{gathered}
$$

This gives the polynomial above.
2. By Tower Law, we have

$$
\begin{aligned}
m[k(\alpha, \beta): k(\alpha)]=[k(\alpha, \beta): k(\alpha)][k(\alpha): k] & =[k(\alpha, \beta): k]= \\
& =[k(\alpha, \beta): k(\beta)][k(\beta): k]=[k(\alpha, \beta): k(\beta)] n,
\end{aligned}
$$

and the statement follows. For $\alpha=\sqrt[3]{2}$ and $\beta=\omega \sqrt[3]{2}$ we have $[k(\alpha): k]=[k(\beta): k]=3$, but $[k(\alpha, \beta): k(\alpha)]=2$. (We have $\mathbb{Q}(\alpha, \beta)=\mathbb{Q}(\alpha, \omega)$, the minimal polynomial of ω over \mathbb{Q} is $x^{2}+x+1$, and this polynomial has no real roots so it cannot split in $\left.\mathbb{Q}(\alpha)\right)$.
3. The roots of $x^{4}-2$ are $\pm \sqrt[4]{2}$ and $\pm i \sqrt[4]{2}$, so the field generated by those roots if $\mathbb{Q}(\sqrt[4]{2}, i)$. Note that $[\mathbb{Q}(\sqrt[4]{2}): \mathbb{Q}]=4$ since $x^{4}-2$ is irreducible by Eisenstein, and this extension contains only real numbers, so $[\mathbb{Q}(\sqrt[4]{2}, i): \mathbb{Q}(\sqrt[4]{2})]=2$, and hence by Tower Law $[\mathbb{Q}(\sqrt[4]{2}, i): \mathbb{Q}]=8$. As a basis we can take the elements $1, \sqrt[4]{2}, \sqrt[4]{4}, \sqrt[4]{8}, i, i \sqrt[4]{2}, i \sqrt[4]{4}, i \sqrt[4]{8}$; these elements manifestly form a spanning set, and the degree computation shows that they are linearly independent.
4. Since the splitting field is $\mathbb{Q}(\sqrt[4]{2}, i)$, each Galois group element is completely determined by the action on $\sqrt[4]{2}$ and on i : $\sqrt[4]{2}$ is sent to $i \sqrt[4]{2}$, where $0 \leqslant i \leqslant 3$, and i is sent to $\pm i$. There must be 8 elements in the Galois group, so all these are well defined automorphisms. It is easy to identify this group as the dihedral group D_{4}, and moreover there is a clear explanation of the isomorphism. Indeed, if we consider in the complex plane the square formed by the roots of $x^{4}-2$, then the Galois group action on the roots is manifestly the group of symmetries of that square: the element σ for which $\sigma(\sqrt[4]{2})=i \sqrt[4]{2}, \sigma(i)=\mathfrak{i}$, implements the rotation of the square, while the element τ for which $\tau(\sqrt[4]{2})=\sqrt[4]{2}, \tau(i)=-i$ implements the reflection about the diagonal.
5. Suppose that p is coprime to $[\mathrm{K}: \mathrm{k}]$. This implies that $x^{p}-a$ cannot be irreducible over k, or else K contains a subfield $k(\sqrt[p]{a})$ of degree p over k, in contradiction with the tower law. Thus, in $k[x]$ we have $x^{p}-a=f(x) g(x)$. All roots of $x^{p}-a$ in its splitting field are of the form $\sqrt[p]{a} \xi$, where ξ is a p-th root of 1 . Thus, the constant term of $f(x)$ is $\sqrt[p]{a}{ }^{\text {d }} \zeta$, where $0<d<p$ is the degree of $f(x)$, and ζ is a p-th root of 1 . We have $d x+p y=1$ for some $x, y \in \mathbb{Z}$, so $\left(\sqrt[p]{a}{ }^{d} \zeta\right)^{x}=\sqrt[p]{a}{ }^{1-p y} \zeta^{x}=\sqrt[p]{a} a^{-y} \zeta^{x}$ is an element of k, and therefore $\sqrt[p]{a} \zeta^{x}$ is an element of k, that is $x^{p}-a$ has a root in k.
6. Yes, since \mathbb{F}_{8} is normal (it is the splitting field of $\chi^{8}-x$ over \mathbb{F}_{2}) and separable (since every element of a finite field of characteristic p is a p-th power, so a result from class applies). The Galois group of this extension is cyclic of order 3, generated by the automorphism $x \mapsto \chi^{2}$. (The degree of the extension is 3 , hence the group is cyclic of order 3 , hence we just need to find one nontrivial automorphism to generate it).

