
MA 3419: Galois theory
Selected answers/solutions to the assignment due October 31, 2017

1. We have α = β3 −β, and α3 −α− 1 = 0. Substituting the expression for α, we obtain
(β3 − β)3 − (β3 − β) − 1 = 0, or β9 − 3β7 + 3β5 − 2β3 + β− 1 = 0.

An alternative solution (which is better for more general problems): let α1, α2, α3 be all
the three roots of x3 − x− 1. We consider the polynomial

(x3 − x− α1)(x
3 − x− α2)(x

3 − x− α3),

expand it, and use the Vieta theorem according to which

α1 + α2 + α3 = 0,

α1α2 + α1α3 + α2α3 = −1,

α1α2α3 = 1.

This gives the polynomial above.
2. By Tower Law, we have

m[k(α,β) : k(α)] = [k(α,β) : k(α)][k(α) : k] = [k(α,β) : k] =

= [k(α,β) : k(β)][k(β) : k] = [k(α,β) : k(β)]n,

and the statement follows. For α = 3
√
2 and β = ω

3
√
2 we have [k(α) : k] = [k(β) : k] = 3,

but [k(α,β) : k(α)] = 2. (We have Q(α,β) = Q(α,ω), the minimal polynomial of ω over Q
is x2 + x+ 1, and this polynomial has no real roots so it cannot split in Q(α)).

3. The roots of x4−2 are ± 4
√
2 and ±i 4

√
2, so the field generated by those roots if Q( 4

√
2, i).

Note that [Q( 4
√
2) : Q] = 4 since x4−2 is irreducible by Eisenstein, and this extension contains

only real numbers, so [Q( 4
√
2, i) : Q( 4

√
2)] = 2, and hence by Tower Law [Q( 4

√
2, i) : Q] = 8. As

a basis we can take the elements 1, 4
√
2,

4
√
4,

4
√
8, i, i

4
√
2, i

4
√
4, i

4
√
8; these elements manifestly

form a spanning set, and the degree computation shows that they are linearly independent.
4. Since the splitting field is Q( 4

√
2, i), each Galois group element is completely determined

by the action on 4
√
2 and on i: 4

√
2 is sent to il 4

√
2, where 0 6 i 6 3, and i is sent to ±i. There

must be 8 elements in the Galois group, so all these are well defined automorphisms. It is easy
to identify this group as the dihedral group D4, and moreover there is a clear explanation of
the isomorphism. Indeed, if we consider in the complex plane the square formed by the roots
of x4 − 2, then the Galois group action on the roots is manifestly the group of symmetries
of that square: the element σ for which σ( 4

√
2) = i

4
√
2, σ(i) = i, implements the rotation of

the square, while the element τ for which τ( 4
√
2) = 4

√
2, τ(i) = −i implements the reflection

about the diagonal.
5. Suppose that p is coprime to [K : k]. This implies that xp − a cannot be irreducible

over k, or else K contains a subfield k( p
√
a) of degree p over k, in contradiction with the tower

law. Thus, in k[x] we have xp − a = f(x)g(x). All roots of xp − a in its splitting field are of

the form p
√
aξ, where ξ is a p-th root of 1. Thus, the constant term of f(x) is p

√
a
d
ζ, where

0 < d < p is the degree of f(x), and ζ is a p-th root of 1. We have dx + py = 1 for some

x, y ∈ Z, so ( p
√
a
d
ζ)x = p

√
a
1−py

ζx = p
√
aa−yζx is an element of k, and therefore p

√
aζx is an

element of k, that is xp − a has a root in k.



6. Yes, since F8 is normal (it is the splitting field of x8 − x over F2) and separable (since
every element of a finite field of characteristic p is a p-th power, so a result from class applies).
The Galois group of this extension is cyclic of order 3, generated by the automorphism x 7→ x2.
(The degree of the extension is 3, hence the group is cyclic of order 3, hence we just need to
find one nontrivial automorphism to generate it).


