
MA 3419: Galois theory
Selected answers/solutions to the assignment due October 17, 2017

1. (a) The polynomial x2 − x works, as it has roots 0, 1, 3, 4.
(b) Suppose that the polynomial x2+ax+b has three distinct roots in Z/4Z. Replacing x

by y = x−u and expanding as a polynomial in y, we may assume, without loss of generality,
that one of the roots is 0, so that our polynomial is x2 + ax = x(x + a). Suppose that this
polynomial has a root b different from 0 and −a modulo 4. If b(b+a) vanishes in Z/4Z, and
b 6= 0,−a, then each of the elements b and b+ a must be an even nonzero element of Z/4Z,
so b = b + a = 2. This implies a = 0, so our polynomial is x2, which only has one root 0, a
contradiction.

2. (a) This polynomial does not have roots in F3 (since 02 = 0, 12 = 22 = 1 in F3), hence
irreducible (it is of degree two, so a proper factor is a polynomial of degree one that therefore
has a root). The quotient F3[x]/(x

2 + 1) is therefore a field; it is a vector space of dimension
two over F3, and so consists of 9 elements. The representatives of cosets are elements a+ bx

with a, b ∈ F3. In the quotient, if we denote the coset of x by i, we have i2 + 1 = 0, so we
indeed have the product rule

(a+ bi)(c+ di) = ac− bd+ (ad+ bc)i.

(b) The group (F9)
× is cyclic, therefore it is isomorphic to Z/8Z. In Z/8Z, exactly four

elements can be taken as generators, the cosets of 1, 3, 5, and 7, which are precisely the odd
elements, or, multiplicatively, elements that are not squares. We have (±1)2 = 1, (±i)2 = −1,
(±(1 + i))2 = 2i = −i, (±(1 − i))2 = −2i = i. Thus, the elements that are not squares are
±1± i.

3. (a) Degree 1: x and x + 1. Degree 2: x2 + x + 1 (the others x2, x2 + x = x(x + 1) and
x2+1 = (x+1)2 are clearly reducible, and this one clearly has no roots). Degree 3: reducibility
for degree 3 is still equivalent to having a root, so we just need to avoid the polynomials with
root 0 (constant term 0) and root 1 (sum of coefficients zero). We obtain the polynomials
x3+x+1 and x3+x2+1. Degree 4: a reducible polynomial of degree 4 either has a root, or is
a product of two irreducibles of degree 2, which we already know. This gives the polynomials
x4 + x+ 1, x4 + x3 + 1, x4 + x3 + x2 + x+ 1.

(b) The rings F2[x]/(x
3 + x + 1) and F2[x]/(x

4 + x + 1) are fields of 8 = 23 and 16 = 24

elements respectively.
4. (a) Suppose that x3 + x+ 1 is reducible in Q[x]. Since it is a cubic polynomial, it must

have a rational root p/q, where gcd(p, q) = 1. We have
(
p
q

)3
+ p

q + 1 = 0, or, clearing the

denominators, p3 + pq2 + q3 = 0, so p3 = −q2(p + q) and q3 = −p(p2 + q2), which shows
that p3 is divisible by q and q3 is divisible by p. Since gcd(p, q) = 1, this is possible only for
p = q = ±1, so ±1 is a root of this polynomial which is clearly false.

Recall from class that to find 1/q(a) in k[x]/(f(x)), where a is the coset of x, we should
find polynomials r(x) and s(x) for which r(x)f(x) + s(x)q(x) = 1; then s(a) = 1/q(a).

(b) We have (x3 + x+ 1) − (x2 + 1)x = 1, so 1/a = −a2 − 1.
(c) We have −(x3 + x+ 1) + (x+ 1)(x2 − x+ 2) = 1, so 1/(a+ 1) = a2 − a+ 2.
(d) We have (x3 + x+ 1) − x(x2 + 1) = 1, so 1/(a2 + 1) = −a.



5. (a) Assume the contrary, so that
√
3 = a + b

√
2, where a, b ∈ Q. This implies

3 = a2 + 2b2 + 2ab
√
2, so, since

√
2 /∈ Q, we have ab = 0. If a = 0, we have

√
3 = b

√
2, so√

3
2 is rational, and if b = 0, we have

√
3 = a is rational, a contradiction.

(b) It is the polynomial (x−
√
2−
√
3)(x+

√
2−
√
3)(x−

√
2+
√
3)(x+

√
2+
√
3) = x4−10x2+1.

Note that the minimal polynomial of
√
2+
√
3 must divide this one, so it is sufficient to show

that x4 − 10x2 + 1 is irreducible. The roots of this polynomial are not rational, since if, e.g.,√
2+
√
3 is rational, then 1/(

√
2+
√
3) =

√
3−
√
2 is rational, and consequently

√
2 is rational.

Thus, if this polynomial factorises, it is a product of two quadratic polynomial with integer
coefficients, x4 − 10x2 + 1 = f(x)g(x). The sum of roots of f(x), which is, up to a sign, one of
its coefficients, is obtained by adding two of the roots of x4 − 10x2 + 1; the possible values of
this sum is 0, −2

√
2, 2
√
2, −2

√
3, 2
√
3. Hence, for the coefficients of f(x) to be integers, that

sum must be zero, so, without loss of generality,
√
2 +
√
3 and −

√
2 −
√
3 are roots of f(x),

and
√
2 −
√
3 and −

√
2 +
√
3 are roots of g(x). But then the product of the roots of f(x) is

−5+ 2
√
6 which is not an integer.

(c) It is the polynomial (x −
√
2 −
√
3)(x −

√
2 +
√
3) = x2 − 2

√
2x − 1. It is irreducible

because if it were decomposed as a product of two proper factors, we would have
√
3 ∈ Q(

√
2).

6. Let us prove the result for a + b; the proof for ab is completely analogous. Suppose
that f(x) and g(x) are the minimal polynomials for a and b over Q. Suppose further that
a1 = a, a2, . . . , an and b1 = b, . . . , bm are, respectively, all roots of those polynomials.
Consider the polynomial

n∏
i=1

m∏
j=1

(x− si − tj).

The coefficients of this polynomial are polynomial expressions of s1, . . . , sn and t1, . . . , tm
with rational coefficients. Since they are invariant under all permutations of s1, . . . , sn, they
are in R[e1, . . . , en], where R = Q[t1, . . . , tm] and ei are elementary symmetric polynomials
of s1, . . . , sn. Substituting si = ai, we obtain polynomial expressions in t1, . . . , tm with
rational coefficients. These are invariant under all permutations of t1, . . . , tm, so they are
in Q[f1, . . . , fm], where fi are elementary symmetric polynomials of t1, . . . , tm. Substituting
ti = bi, we obtain rational numbers. Thus the polynomial

n∏
i=1

m∏
j=1

(x− ai − bj)

with one of the roots a1 + b1 = a+ b has rational coefficients, which completes the proof.


