MA 3419: Galois theory Selected answers/solutions to the assignment due October 17, 2017

1. (a) The polynomial $x^{2}-x$ works, as it has roots $0,1,3,4$.
(b) Suppose that the polynomial $x^{2}+a x+b$ has three distinct roots in $\mathbb{Z} / 4 \mathbb{Z}$. Replacing $x$ by $y=x-u$ and expanding as a polynomial in $y$, we may assume, without loss of generality, that one of the roots is 0 , so that our polynomial is $x^{2}+a x=x(x+a)$. Suppose that this polynomial has a root $b$ different from 0 and $-a$ modulo 4 . If $b(b+a)$ vanishes in $\mathbb{Z} / 4 \mathbb{Z}$, and $b \neq 0,-a$, then each of the elements $b$ and $b+a$ must be an even nonzero element of $\mathbb{Z} / 4 \mathbb{Z}$, so $b=b+a=2$. This implies $a=0$, so our polynomial is $x^{2}$, which only has one root 0 , $a$ contradiction.
2. (a) This polynomial does not have roots in $\mathbb{F}_{3}\left(\right.$ since $0^{2}=0,1^{2}=2^{2}=1$ in $\left.\mathbb{F}_{3}\right)$, hence irreducible (it is of degree two, so a proper factor is a polynomial of degree one that therefore has a root). The quotient $\mathbb{F}_{3}[x] /\left(x^{2}+1\right)$ is therefore a field; it is a vector space of dimension two over $\mathbb{F}_{3}$, and so consists of 9 elements. The representatives of cosets are elements $a+b x$ with $a, b \in \mathbb{F}_{3}$. In the quotient, if we denote the coset of $x$ by $i$, we have $i^{2}+1=0$, so we indeed have the product rule

$$
(a+b i)(c+d i)=a c-b d+(a d+b c) i .
$$

(b) The group $\left(\mathbb{F}_{9}\right)^{\times}$is cyclic, therefore it is isomorphic to $\mathbb{Z} / 8 \mathbb{Z}$. In $\mathbb{Z} / 8 \mathbb{Z}$, exactly four elements can be taken as generators, the cosets of $1,3,5$, and 7 , which are precisely the odd elements, or, multiplicatively, elements that are not squares. We have $( \pm 1)^{2}=1,( \pm i)^{2}=-1$, $( \pm(1+\mathfrak{i}))^{2}=2 \mathfrak{i}=-\mathfrak{i},( \pm(1-i))^{2}=-2 \mathfrak{i}=\mathfrak{i}$. Thus, the elements that are not squares are $\pm 1 \pm i$.
3. (a) Degree 1: $x$ and $x+1$. Degree 2: $x^{2}+x+1$ (the others $x^{2}, x^{2}+x=x(x+1)$ and $x^{2}+1=(x+1)^{2}$ are clearly reducible, and this one clearly has no roots). Degree 3: reducibility for degree 3 is still equivalent to having a root, so we just need to avoid the polynomials with root 0 (constant term 0 ) and root 1 (sum of coefficients zero). We obtain the polynomials $x^{3}+x+1$ and $x^{3}+x^{2}+1$. Degree 4: a reducible polynomial of degree 4 either has a root, or is a product of two irreducibles of degree 2 , which we already know. This gives the polynomials $x^{4}+x+1, x^{4}+x^{3}+1, x^{4}+x^{3}+x^{2}+x+1$.
(b) The rings $\mathbb{F}_{2}[x] /\left(x^{3}+x+1\right)$ and $\mathbb{F}_{2}[x] /\left(x^{4}+x+1\right)$ are fields of $8=2^{3}$ and $16=2^{4}$ elements respectively.
4. (a) Suppose that $x^{3}+x+1$ is reducible in $\mathbb{Q}[x]$. Since it is a cubic polynomial, it must have a rational root $p / q$, where $\operatorname{gcd}(p, q)=1$. We have $\left(\frac{p}{q}\right)^{3}+\frac{p}{q}+1=0$, or, clearing the denominators, $p^{3}+p q^{2}+q^{3}=0$, so $p^{3}=-q^{2}(p+q)$ and $q^{3}=-p\left(p^{2}+q^{2}\right)$, which shows that $p^{3}$ is divisible by $q$ and $q^{3}$ is divisible by $p$. Since $\operatorname{gcd}(p, q)=1$, this is possible only for $p=q= \pm 1$, so $\pm 1$ is a root of this polynomial which is clearly false.

Recall from class that to find $1 / q(a)$ in $k[x] /(f(x))$, where $a$ is the coset of $x$, we should find polynomials $r(x)$ and $s(x)$ for which $r(x) f(x)+s(x) q(x)=1$; then $s(a)=1 / q(a)$.
(b) We have $\left(x^{3}+x+1\right)-\left(x^{2}+1\right) x=1$, so $1 / a=-a^{2}-1$.
(c) We have $-\left(x^{3}+x+1\right)+(x+1)\left(x^{2}-x+2\right)=1$, so $1 /(a+1)=a^{2}-a+2$.
(d) We have $\left(x^{3}+x+1\right)-x\left(x^{2}+1\right)=1$, so $1 /\left(a^{2}+1\right)=-a$.
5. (a) Assume the contrary, so that $\sqrt{3}=a+b \sqrt{2}$, where $a, b \in \mathbb{Q}$. This implies $3=a^{2}+2 b^{2}+2 a b \sqrt{2}$, so, since $\sqrt{2} \notin \mathbb{Q}$, we have $a b=0$. If $a=0$, we have $\sqrt{3}=b \sqrt{2}$, so $\sqrt{\frac{3}{2}}$ is rational, and if $b=0$, we have $\sqrt{3}=a$ is rational, a contradiction.
(b) It is the polynomial $(x-\sqrt{2}-\sqrt{3})(x+\sqrt{2}-\sqrt{3})(x-\sqrt{2}+\sqrt{3})(x+\sqrt{2}+\sqrt{3})=x^{4}-10 x^{2}+1$. Note that the minimal polynomial of $\sqrt{2}+\sqrt{3}$ must divide this one, so it is sufficient to show that $x^{4}-10 x^{2}+1$ is irreducible. The roots of this polynomial are not rational, since if, e.g., $\sqrt{2}+\sqrt{3}$ is rational, then $1 /(\sqrt{2}+\sqrt{3})=\sqrt{3}-\sqrt{2}$ is rational, and consequently $\sqrt{2}$ is rational. Thus, if this polynomial factorises, it is a product of two quadratic polynomial with integer coefficients, $x^{4}-10 x^{2}+1=f(x) g(x)$. The sum of roots of $f(x)$, which is, up to a sign, one of its coefficients, is obtained by adding two of the roots of $x^{4}-10 x^{2}+1$; the possible values of this sum is $0,-2 \sqrt{2}, 2 \sqrt{2},-2 \sqrt{3}, 2 \sqrt{3}$. Hence, for the coefficients of $f(x)$ to be integers, that sum must be zero, so, without loss of generality, $\sqrt{2}+\sqrt{3}$ and $-\sqrt{2}-\sqrt{3}$ are roots of $f(x)$, and $\sqrt{2}-\sqrt{3}$ and $-\sqrt{2}+\sqrt{3}$ are roots of $g(x)$. But then the product of the roots of $f(x)$ is $-5+2 \sqrt{6}$ which is not an integer.
(c) It is the polynomial $(x-\sqrt{2}-\sqrt{3})(x-\sqrt{2}+\sqrt{3})=x^{2}-2 \sqrt{2} x-1$. It is irreducible because if it were decomposed as a product of two proper factors, we would have $\sqrt{3} \in \mathbb{Q}(\sqrt{2})$.
6. Let us prove the result for $a+b$; the proof for $a b$ is completely analogous. Suppose that $f(x)$ and $g(x)$ are the minimal polynomials for $a$ and $b$ over $\mathbb{Q}$. Suppose further that $a_{1}=a, a_{2}, \ldots, a_{n}$ and $b_{1}=b, \ldots, b_{m}$ are, respectively, all roots of those polynomials. Consider the polynomial

$$
\prod_{i=1}^{n} \prod_{j=1}^{m}\left(x-s_{i}-t_{j}\right)
$$

The coefficients of this polynomial are polynomial expressions of $s_{1}, \ldots, s_{n}$ and $t_{1}, \ldots, t_{m}$ with rational coefficients. Since they are invariant under all permutations of $s_{1}, \ldots, s_{n}$, they are in $R\left[e_{1}, \ldots, e_{n}\right]$, where $R=\mathbb{Q}\left[t_{1}, \ldots, t_{m}\right]$ and $e_{i}$ are elementary symmetric polynomials of $s_{1}, \ldots, s_{n}$. Substituting $s_{i}=a_{i}$, we obtain polynomial expressions in $t_{1}, \ldots, t_{m}$ with rational coefficients. These are invariant under all permutations of $t_{1}, \ldots, t_{m}$, so they are in $\mathbb{Q}\left[f_{1}, \ldots, f_{m}\right]$, where $f_{i}$ are elementary symmetric polynomials of $t_{1}, \ldots, t_{m}$. Substituting $t_{i}=b_{i}$, we obtain rational numbers. Thus the polynomial

$$
\prod_{i=1}^{n} \prod_{j=1}^{m}\left(x-a_{i}-b_{j}\right)
$$

with one of the roots $a_{1}+b_{1}=a+b$ has rational coefficients, which completes the proof.

