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Let us outline here a few proofs of the infinitude of primes. Altogether, they give a nice intro-
duction to basic methods of number theory. One of very important arithmetic functions is π(N),
the number of primes not exceeding N . In other words, we shall show that lim

N→+∞
π(N) = +∞.

Proof 1. (Euclid) Suppose that there are finitely many primes p1, . . . , pk. Consider the number
N = p1p2 · · · pk + 1, and let q be a prime divisor of N . Clearly, gcd(N, pi) = 1, so q is a prime
number different from all pi. Contradiction. �

Proof 2. Let us show that the Fermat numbers 22
n

+ 1 are pairwise coprime. Indeed, because
of the formula (a− b)(a+ b) = a2 − b2, we have

(2− 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1) · · · (22n + 1) = 22
n+1 − 1 = (22

n+1

+ 1)− 2,

which shows that any common divisor of 22
n+1

+ 1 and 22
m

+ 1 with m ≤ n is a divisor of 2, and
hence is equal to 1 since all Fermat numbers are odd. Therefore, different Fermat numbers have
different prime divisors, and the number of primes is therefore infinite. �

The two above proofs no not use anything except divisibility. The next one requires a bit of
basic group theory.

Proof 3. Let p be a prime number, and let q be a prime divisor of 2p − 1. We shall now show
that q > p, which will show that there is no largest prime number, and hence prove our result.
Since 2p ≡ 1 (mod q), we see that the order of 2 in the multiplicative group (Z/qZ)× divides p,
hence is equal to p (since p is a prime). By the Lagrange’s theorem, p divides the order of the
group (Z/qZ)×, that is q − 1. Hence q > p. �

The next proof uses basics of analysis.

Proof 4. (Euler) Suppose that there are finitely many primes p1, . . . , pk. Let us expand the
expression

(

1− 1

p1

)−1 (

1− 1

p2

)−1

· · ·
(

1− 1

pk

)−1

,

using the geometric series formula
(

1− 1

p

)−1

= 1 +
1

p
+

1

p2
+ . . .

Taking only the terms up to 1
p
a1
1

in the first series, the terms up to 1
p
a2
2

in the second series etc., we

deduce that
(

1− 1

p1

)−1 (

1− 1

p2

)−1

· · ·
(

1− 1

pk

)−1

≥
∑

n≤p
a1
1

p
a2
2

···p
ak

k

1

n
,

which is impossible, since the partial sums of the harmonic series
∑ 1

n
increase without bound. �

The next proof is said to be inspired by information theory: the contradiction comes from the
fact that if there were only finitely many primes, then large numbers could be represented too
economically.
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Proof 5. (Chaitin) Suppose that there are finitely many primes p1, . . . , pk. Let us estimate the
number of integers that do not exceed N that can be formed as products pa11 · · · pakk . For a1, we

have at least the restriction pa11 ≤ N , so a1 ≤ logp1 N = lnN
ln p1

. Similarly, a2 ≤ lnN
ln p1

etc. Therefore,

the total number of products we may form is at most
(

1 +
lnN

ln p1

)(

1 +
lnN

ln p2

)

· · ·
(

1 +
lnN

ln pk

)

,

hence

N ≤
(

1 +
lnN

ln p1

)(

1 +
lnN

ln p2

)

· · ·
(

1 +
lnN

ln pk

)

.

But the latter inequality would mean that a polynomial in lnN grows faster than N , which is
impossible since for each fixed k we have

lim
N→+∞

lnk N

N
= 0.

�

Proof 6. (Erdös) Let us note that each positive integer n can be uniquely decomposed as
N = rs2, where r is square-free, that is not divisible by a perfect square greater than 1. From that,
it follows that

N ≤ 2π(N) ·
√
N.

Indeed, the left hand side is the number of positive integers not exceeding N , and the right hand
side estimates that number. A square free number is a product of distinct primes, and to get an
estimate from above, we may just take or not take any prime not exceeding N (which accounts for

the 2π(N) factor), and also there are at most
√
N perfect squares not exceeding N . Simplifying, we

conclude that
2π(N) ≥

√
N,

hence lim
N→+∞

π(N) = +∞. �

Let us remark that from this proof it is very easy to deduce that the sum of reciprocals of primes
is infinite. For otherwise we would have

∑

p>pk

1

p
<

1

2

for some k. Note that the number of integers not exceeding N that are divisible by p is at most N
p
,

therefore, the number of integers not exceeding N that have a prime divisor p > pk is at most
∑

p>pk

N

p
<

N

2
.

This implies that for any N , at least half of integers not exceeding N only have prime divisors not
exceeding pk, which gives

N

2
≤ 2k ·

√
N,

a contradiction.

The next proof is a slick combination of the fourth and the sixth one.

Proof 7. Let us note that since each positive integer n can be uniquely decomposed as N = rs2,
where r is square-free, the sum of reciprocals of square-free numbers

∑

r square-free

1

r
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is infinite, otherwise the harmonic series
∑ 1

n
=

∑

r square-free

1

r
·
∑ 1

s2

would have been convergent. But if there are finitely many primes p1, . . . , pk, then we have
∑

r square-free

1

r
=

(

1 +
1

p1

)(

1 +
1

p2

)

· · ·
(

1 +
1

pk

)

,

a contradiction. �

The last proof is probably the most bizarre one since it uses notions of basic topology.

Proof 8. (Fürstenberg) Let us call a subset U ⊂ Z open, if it is empty, or a union of arithmetic
sequences. In other words, a set of integers is open if together with every number x it contains
some arithmetic sequence x + an, n ∈ Z. The set of all integers together with this collection of
open sets forms a topological space, that is open sets satisfy the three key properties that open sets
always satisfy:

• The sets ∅ and Z are open, the former by definition, the latter because it is an arithmetic
sequence.

• A union of several open sets is open: a union of unions of arithmetic sequences is a union
of arithmetic sequences.

• A finite intersection of several open sets is open. Indeed, if x ∈ U1 ∩ U2 ∩ · · · ∩ Uk, then x
belongs to each Ul, and hence Ul contains some arithmetic sequence x + aln, n ∈ Z. But
then U1 ∩ U2 ∩ · · · ∩ Uk contains the arithmetic sequence x+ lcm(a1, . . . , ak)n, n ∈ Z.

Note that the set of integers that are not divisible by the given number m is open: is is the union
of arithmetic sequences k + mn, n ∈ Z, for all k = 1, . . . ,m − 1. Therefore, if there were finitely
many different primes p1, . . . , pk, then the set of integers not divisible by any of them would have
been open, as a finite intersection of open sets. But this set is manifestly {−1, 1}, so it definitely
is not open (nonempty finite sets are not open for this topology. �

There are some reasons to think that Fürstenberg’s proof is Euclid’s proof in disguise. Indeed,
one can argue the set of integers that are not divisible by pl contains 1, so unwrapping the lcm
construction above, we conclude that the set of integers not divisible by any of pl contains 1 +
p1p2 · · · pk, which must have prime divisors, and that leads to a contradiction. However, at this
stage we are making a choice that brings the proofs together. However, on the nose, Fürstenberg’s
proof obtains a contradiction in a much more non-constructive way than the Euclid’s one.

Remark. Let us show that Fürstenberg’s topology actually comes from a certain metric on Z. For
x, y ∈ Z, let us define

d(x, y) =

{

0, x = y,
1

max{k! : k!|(x−y)}

(we leave it as an exercise to check that this d(x, y) satisfies all axioms of a metric). Note that the
open ball of radius 1

(m−1)! centered at the point x of this metric space is precisely the the arithmetic

sequence x+m!Z. Thus, each open ball in this metric space contains an arithmetic sequence, and
each arithmetic sequence contains an open ball, so an open set in this metric space is precisely an
open set as defined in Fürstenberg’s proof.
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