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Last week, we figured out how to solve quadratic equations modulo primes, or at least how to
figure out whether a quadratic equation has solutions. Indeed, a general quadratic congruence

ax2 + bx+ c ≡ 0 (mod p)

has solutions if and only if its discriminant b2 − 4ac is a square modulo p, as the formula for roots
of quadratic equations (which makes sense over any field) tells us. (To be completely precise, this
formula is not applicable for p = 2, since it has 2 in the denominator, but solving equations modulo
2 is easy enough by inspection, since the corresponding field consists of just two elements). We
shall now address solutions to polynomial congruences modulo any integer n, and then discuss a
topic in number theory which is naturally related to that, the p-adic numbers.

First of all, let us remark that it is sufficient to figure out how to solve congruences modulo prime
powers. For if n = pa11 pa22 · · · p

ak
k is a prime decomposition of n, then of course for each polynomial

f(t) we have (for any x modulo n)

f(x) ≡ 0 (mod n) if and only if
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













f(x) ≡ 0 (mod pa11 ),

f(x) ≡ 0 (mod pa22 ),

. . .

f(x) ≡ 0 (mod p
ak
k ).

However, if xi is a solution to f(t) ≡ 0 (mod paii ) for each i = 1, . . . , k, then the Chinese Remainder
Theorem guarantees that there exists a unique x modulo n such that



















x ≡ x1 (mod pa11 ),

x ≡ x2 (mod pa22 ),

. . .

x ≡ xk (mod p
ak
k ),

and therefore by above congruences f(x) ≡ 0 (mod n). We just proved the following

Theorem 1. If n = pa11 pa22 · · · p
ak
k , and f(t) is a polynomial modulo n, then the number of solutions

to the congruence f(t) ≡ 0 (mod n) is equal to the product of numbers of solutions to congruences

f(t) ≡ 0 (mod p
ai
i ).

It remains to deal with the case of a prime power pm. Of course, in order to be able to solve a
congruence modulo pm, one has to be able to solve it modulo p. In the case of quadratic equations,
we learned how to do that; in the case of polynomials of higher degrees there are certain methods,
although less powerful. We however shall assume that we can handle the case of congruences
modulo p, and describe a process of “amelioration”, or “lifting” of solutions to solutions modulo
higher powers. The key ingredient is the following result, often referred to as “Hensel’s Lemma”:

Theorem 2. Let f(t) be a polynomial modulo pn+1. Suppose that for some x modulo pn we have

• f(x) ≡ 0 (mod pn),
• for some k such that 0 ≤ 2k < n we have f ′(x) ≡ 0 (mod pk) but f ′(x) 6≡ 0 (mod pk+1).
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Then there exists y modulo pn+1 such that

• f(y) ≡ 0 (mod pn+1),
• f ′(y) ≡ 0 (mod pk) but f ′(y) 6≡ 0 (mod pk+1),
• y ≡ x (mod pn−k).

Proof. The proof in fact is suggested by the last requirement that y must satisfy. Let us look for y
in the form y = x+ pn−kz. Taylor’s formula for polynomials tells us that

f(y) = f(x+ pn−kz) = f(x) + pn−kzf ′(x) + p2n−2kh (mod pn+1)

for some h. By our assumption, f(x) ≡ pnb (mod pn+1), and also for some c coprime to p we have
f ′(x) ≡ pkc (mod pn+1), so

f(y) = pn(b+ zc) + pn+(n−2k)h ≡ pn(b+ zc) (mod pn+1)

because of our assumption on k. Finally, because of our assumptions on c, we can find z modulo p

for which b+ zc ≡ 0 (mod p), and hence

f(y) ≡ 0 (mod pn+1).

Note also, that Taylor’s formula applied for f ′(t) gives us

f ′(y) = f ′(x+ pn−kc) ≡ f ′(x) (mod pn−k),

so since n−k > k and f ′(x) ≡ pkc (mod pn+1), we conclude that f ′(y) ≡ 0 (mod pk) but f ′(y) 6≡ 0
(mod pk+1), as required. �

Remark. Note that mnemonically our formula z = − b
c
implies that we have y = x + pn−kz =

x− pnb

pkc
= x−

f(x)
f ′(x) , so what is happening here is precisely one iteration of the “Newton’s method”

for constructing approximate solutions to equations.

Remark. As with Newton’s method, this result does not make claims about the uniqueness of y,

neither does it claim anything for the case where the derivative f ′(x) is divisible by high powers of

p. However, in many cases it gives a method for solving equations which is powerful enough.
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