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When one talks about Diophantine equations in the context of number theory, this refers to
solving polynomial equations with several variables over integers. There are some famous examples
of that sort, e.g. the equation x2 = 2y2 (it has just one integer solution (0, 0), this corresponds to

the fact that
√
2 is irrational), or the equation x2 − Dy2 = 1 (Pell’s equation that we mentioned

before), or the equation x2 + y2 = z2 (Pythagorean triples, that is sides of right triangles with
integer side lengths), or the equation xn + yn = zn (Fermat’s equation). In this lecture, we shall
discuss some ways to classify all solutions to some equations like that.

First, let us classify all Pythagorean triples. Note that if x2 + y2 = z2, and x, y have a common
divisor d, then z also is divisible by d, and we can cancel out d2. Thus, we should only concern
ourselves with “primitive” solutions, that is solutions without common divisors. For such a solution,
let us divide both sides by z2, obtaining s2 + t2 = 1, where s and t are fractions written in lowest
terms. To classify rational solutions to quadratic equations in two variables, there is a famous
method, which is also known as Euler’s substitutions in integral calculus. Namely, we know one
rational solution (1, 0) to our equation. If we draw a line through that point and another rational
solution, it will have rational slope, since it passes through two points with rational coordinates.
More interestingly though, every line whose slope is rational, meets our curve (the circle s2+t2 = 1)
at a point with rational coordinates. Indeed, a line with rational slope k passing through (1, 0) has
the equation t = k(s− 1), and substituting it into s2 + t2 = 1, we get

(k(s − 1))2 + s2 = 1,

or

(s− 1)(k2(s− 1) + s+ 1) = 0,

which means that besides the root s = 1 that we already know, there is also a root

s =
k2 − 1

k2 + 1
,

so that the corresponding t = k(s − 1) = −2k
k2+1

, and we get a rational parametrisation of the circle

s2+ t2 = 1 as
(

k2−1

k2+1
, −2k
k2+1

)

. Since t here is arbitrary, we can multiply it by −1 to not carry around

all the signs, and use the parametrisation
(

k2−1

k2+1
, 2k
k2+1

)

.

Let us now go back to the original equation x2 + y2 = z2. Recall that if we assume that a
solution is primitive, that is without common factors, we have s = x

z
and t = y

z
as fractions in

lowest terms. If k = p
q
, we have (s, t) =

(

p2−q2

p2+q2
,

2pq

p2+q2

)

. Almost always these are fractions in lowest

terms: e.g., if p2 − q2 and p2 + q2 have common divisors, so do 2p2 = (p2 + q2) + (p2 − q2) and
2q2 = (p2 + q2) − (p2 − q2), so by the assumption on p

q
being in lowest terms, the only possible

factor involved may be 2. That indeed may happen if p and q are both odd. (If they are of different
parities, p2 + q2 is not divisible by 2, and if they are both even, p

q
is not in lowest terms). To

summarise, we get now two series of solutions that exhaust all solutions to the Pythagorean triple

equation:
(

p2 − q2, 2pq, p2 + q2
)

where p, q are of different parity, and
(

p2−q2

2
, pq,

p2+q2

2

)

where p, q
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are odd. Let us examine the latter case a bit better. Assume that p and q are both odd. Denote
p+q
2

= p′, p−q
2

= q′. Then we have p2−q2

2
= 2p′q′, pq = (p′)2 − (q′)2, and p2−q2

2
= (p′)2 + (q′)2, that

is the other series with x, y swapped. We arrive at the following precise statement:

Theorem 1. Let (x, y, z) be a primitive solution to the Pythagorean triple equation where y is even.

Then there exist coprime integers p, q such that x = p2 − q2, y = 2pq, z = p2 + q2.

Note that in a primitive Pythagorean triple one of x, y must be even, for if x, y are odd, then
both x2 and y2 are congruent to 1 modulo 4, so this would imply that z2 is congruent to 2 modulo
4, which is clearly impossible.

Let us instantly use that result to prove a particular case of Fermat’s Last Theorem. We shall
deduce it from the following stronger result:

Theorem 2. The equation x4 + y4 = z2 has no integer solutions where both x and y are nonzero.

Proof. First of all, it is enough to study primitive solutions. For if gcd(x, y) = k, then clearly
z2 is divisible by k4 and z is divisible by k2, so

(

x
k
,
y
k
, z
k2

)

is a primitive solution. Second, since

x4 + y4 = z2 now leads to a primitive Pythagorean triple (x2, y2, z), we may without loss of
generality assume that y2 is even, since in a Pythagorean triple one of the first two entries is
even. Therefore we have, for some u, v, (x2, y2, z) = (u2 − v2, 2uv, u2 + v2), so in particular
x2 = u2 − v2, or x2 + v2 = u2. Since we assumed that y2 was even, x2 is odd, so v2 is even,
and there exist s, t such that (x, v, u) = (s2 − t2, 2st, s2 + t2). Substituting these above, we get
y2 = 2uv = 2(s2 + t2) · 2st = 4st(s2 + t2). Since y was assumed even, we can write that as

(y

2

)

= st(s2 + t2).

Note that s, t are coprime, and hence s2 + t2 is coprime with them. A product of coprime integers
is a perfect square if and only if each of them is a square, so s = l2, t = m2, s2 + t2 = n2 for some
l,m, n. This implies l4+m4 = n2. Note that x = s2− t2 = l4−m4, and y =

√

4st(s2 + t2) = 2lmn.
In particular, max(|l|, |m|) < |y| ≤ max(|x|, |y|), so we produced a way to go from a primitive
solution to a “smaller” primitive one. Note also that if y 6= 0, then l,m 6= 0, since y = 2lmn. This
process of moving to “smaller” solutions cannot continue forever, so we have a contradiction with
the existence of a primitive solution with nonzero components. �

Another example that we shall discuss is the equation x2 + y2 + z2 = kxyz, where x, y, z are
integers. Changing, if necessary, signs of some of x, y, z, we may assume that x, y, z, k ≥ 0. Let us
prove the following theorem.

Theorem 3. (1) For k 6= 1, 3, the above equation has no solutions besides x = y = z = 0.
(2) There is a one-to-one correspondence between solutions to the equation x2 + y2 + z2 = xyz

and solutions to the Markov’s equation x2 + y2 + z2 = 3xyz.
(3) There are infinitely many solutions to the Markov’s equation.

Proof. The cases k = 1 and k = 2 will be discussed in an upcoming tutorial.
Let us show that for k > 3 there are no solutions. Suppose that we have a solution, so that

a2 + b2 + c2 = kabc. If one of coordinates is zero, it is clear that it forces the other coordinates to
vanish also, so we may assume that they are all positive.

Step 1. Let us show that the numbers a, b, c are pairwise distinct. Indeed, if a = b then our
equation becomes 2a2 + c2 = ka2c, or c2 = a2(kc − 2), so that a2 | c2, a | c, and c = ad for some
integer d. Substituting it into the original equation, we get d2 = kad− 2, so d | 2, that is d = 1 or
d = 2, — either way, d2 = kad− 2 becomes ka = 3 which contradicts k > 3.

Step 2. Without loss of generality, we have a < b < c. Considering our equation as a quadratic
equation x2 − kabx+ a2 + b2 = 0 for unknown c with a, b fixed, we note that (a, b, kab− c) is also a
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solution, since the sum of roots of an equation x2 + px+ q = 0 is equal to −p. Moreover, kab− c is

positive, since the product of roots of an equation x2+px+q = 0 is equal to q, so kab−c = a2+b2

c
> 0.

Note that for g(x) = x2−kabx+a2+b2, we have g(b) = 2b2+a2−kab2 < 3b2−kab2 = b2(3−ka) < 0,
so b is between c and 3ab − c. Since b < c by assumption, we have 3ab − c < b < c. Thus, from a
positive solution to our equation, we obtained a positive solution with smaller maximal coordinate.
This cannot continue forever, so there can be no solutions.

Let us now explore the case k = 3. It turns out that the procedure we used above to move
to a solution with smaller maximal coordinate can be used to describe a hierarchical structure on
solutions in this case. Let us first show that apart two special cases, the coordinates of a solution
are pairwise distinct. We proceed as above: if a = b then our equation becomes 2a2 + c2 = 3a2c,
or c2 = a2(3c − 2), so that a2 | c2, a | c, and c = ad for some integer d. Substituting it into the
original equation, we get d2 = 3ad− 2, so d | 2, that is d = 1 or d = 2, — either way, d2 = 3ad− 2
becomes 3a = 3, and a = 1. Then we have c2 + 2 = 3c, so c = 1 or c = 2. Thus, we get solutions
(1, 1, 1) and (1, 1, 2), and, of course, the permutations of the latter one, (1, 2, 1) and (2, 1, 1).

Apart from the solutions we just described, every solution has pairwise distinct coordinates,
and so if (a, b, c) is such a solution, then (3bc − a, b, c), (a, 3ac − b, c), and (a, b, 3ab − c) are three
different solutions that we shall call neighbours of the given one. These solutions have positive
coordinates for the same reasons as above. Let us show that for a solution with pairwise distinct
coordinates, one of its neighbours has smaller maximal coordinate. This proceeds as the second
half of the argument above. Indeed, we may assume a < b < c, and for h(x) = x2 − 3abx+ a2 + b2,
we have h(b) = 2b2 + a2 − 3ab2 < 3b2 − 3ab2 = 3b2(1 − a) ≤ 0, so b is between c and 3ab − c.
Since b < c by assumption, we have 3ab − c < b < c. This shows that by a sequence of moves to
neighbours, we can arrive at one of the exceptional solutions. Note also that (1, 1, 1) is a neighbour
of (1, 1, 2), and the neighbour relation is symmetric, since the same move repeated twice brings us
back. Therefore all solutions are connected to (1, 1, 1). Finally, let us show that there are infinitely
many solutions. Let us take a solution with pairwise distinct coordinates a < b < c, and consider
its neighbour (3bc − a, b, c). For k(x) = x2 − 3bcx + c2 + b2, we have h(c) = 2c2 + b2 − 3bc2 <

3c2 − 3bc2 = 3c2(1 − b) ≤ 0, so c is between a and 3bc − a. Since a < c by assumption, we have
a < c < 3bc − a. Therefore, one of the neighbours of a solution with pairwise distinct coordinates
has a strictly larger maximal coordinate, and we are done. �
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