This week, we shall discuss an important family of polynomials and their applications in algebra and number theory.

Recall that a complex number \(\xi \) is said to be a primitive \(n \)th root of 1, if \(\xi^n = 1 \), and \(\xi^k \neq 1 \) for \(1 \leq k < n \). The \(n \)th cyclotomic polynomial \(\Phi_n(x) \) is the polynomial in \(\mathbb{C}[x] \) with leading coefficient 1 whose roots (with multiplicity 1) are all primitive \(n \)th roots of 1.

Example. We have \(\Phi_1(x) = x - 1 \), \(\Phi_2(x) = x + 1 \), \(\Phi_3(x) = x^2 + x + 1 = \frac{x^3 - 1}{x - 1} \), \(\Phi_4(x) = x^2 + 1 \).

Primitive \(n \)th roots of 1 are complex numbers of the form \(e^{\frac{2\pi ki}{n}} \), where \(0 \leq k \neq n - 1 \) and \(\gcd(k, n) = 1 \). Clearly, the number of such \(k \) is equal to \(\phi(n) \), the number of positive integers not exceeding \(n \) and coprime to \(n \). We proved earlier in class that \(\sum_{d \mid n} \phi(d) = n \). In the similar fashion, we shall now prove a generalisation of this statement, namely we shall show that

\[
\prod_{d \mid n} \Phi_d(x) = x^n - 1.
\]

(It is a generalisation, since comparing the degrees of polynomials on the left and on the right, we see that \(\sum_{d \mid n} \phi(d) = n \)). Indeed, each root of the polynomial on the right is a complex number of the form \(e^{\frac{2\pi ki}{n}} \), where \(0 \leq k \neq n - 1 \). If we bring the fraction \(\frac{k}{n} \) to lowest term, we shall get a primitive root of the degree equal to the denominator (which is a divisor of \(n \), and all primitive roots for all divisors appear like that.

The formula we just proved implies the following result.

Lemma. Cyclotomic polynomials have integer coefficients: \(\Phi_n(x) \in \mathbb{Z}[x] \) for all \(n \).

Proof. Induction on \(n \): if for all \(m < n \) the polynomials \(\Phi_m(x) \) have integer coefficients, then clearly

\[
\Phi_n(x) = \frac{x^n - 1}{\prod_{d \mid n, d < n} \Phi_d(x)}
\]

has integer coefficients as well. \(\square \)

Let us now prove a result on cyclotomic polynomials that is important for Galois theory.

Theorem 1. For each \(n \geq 1 \), the cyclotomic polynomial \(\Phi_n(x) \) is irreducible in \(\mathbb{Z}[x] \).

Proof. Let us show that this theorem can be deduced from the following statement (and then prove that statement):

Let \(g(x) \) be an irreducible divisor of \(\Phi_n(x) \) in \(\mathbb{Z}[x] \), and let \(\zeta \) be a complex root of \(g(x) \). Then for each prime \(p \) with \(\gcd(n, p) = 1 \), the complex number \(\zeta^p \) is also a root of \(g(x) \).

How to deduce the theorem from this statement? Let us take \(\zeta_0 = e^{\frac{2\pi i}{n}} \), it is clearly a primitive \(n \)th root of 1, so \(\zeta_0 \) is a root of \(\Phi_n(x) \), hence it is a root of some irreducible divisor \(g(x) \) of \(\Phi_n(x) \) in \(\mathbb{Z}[x] \). By the statement above, for any \(p_1 \) not dividing \(n \), the complex number \(\zeta_1 = \zeta_0^{p_1} \) is also a
root of $g(x)$. Furthermore, by the same statement, for any p_2 not dividing n, the complex number $\zeta_2 = \zeta_1^{p_2} = e^{\frac{2\pi i p_2}{n}}$ is also a root of $g(x)$, etc., so for any collection of (not necessarily different) primes p_1, p_2, \ldots, p_k not dividing n, the complex number $\zeta_0 = e^{\frac{2\pi i p_1 p_2 \cdots p_k}{n}}$ is also a root of $g(x)$. But all primitive nth roots of 1 are of the form ζ_n^k with $\gcd(k, n) = 1$, so all primitive nth roots of 1 are roots of $g(x)$, and $g(x) = \Phi_n(x)$.

It remains to prove the statement above. Let $\Phi_n(x) = g(x)h(x)$, where $g(x)$ is irreducible according to our assumption. Suppose that the statement in question does not hold, so ζ is a root of $h(x)$. (Note that since p does not divide n, the complex number ζ is a primitive nth root of 1). Thus, ζ is a root of the polynomial $h(x^p)$, so $g(x)$ and $h(x^p)$ have common divisors, therefore $h(x^p)$ is divisible by $g(x)$ since $g(x)$ is irreducible. Let us now consider all polynomials modulo p, and denote, for each polynomial $a(x)$, by $[a(x)]$ the same polynomial when considered in $\mathbb{F}_p[x]$. It is important to recall that $[h(x^p)] = [h(x)p] = [h(x)]^p$, because $h(x^p) \equiv (h(x))^p \pmod{p}$ [which relies on the Fermat’s Little Theorem $a^p \equiv a \pmod{p}$ for all $a \in \mathbb{F}_p$, and the property $(a + b)^p \equiv a^p + b^p \pmod{p}$ following from the fact that all the binomial coefficients $\binom{p}{k}$ are divisible by p for $0 < k < p$]. Let $[g_1(x)]$ be some irreducible divisor of $[g(x)]$ modulo p (although $g(x)$ is irreducible in $\mathbb{Z}[x]$, we cannot be sure that it remains irreducible modulo p). Then $[h(x^p)] = [h(x)]^p$ is divisible by $[g_1(x)]$, hence is divisible by $g_1(x)$, so since $\mathbb{F}_p[x]$ is a UFD, we conclude that $[h(x)]$ is divisible by $g_1(x)$. Therefore, $[\Phi_n(x)] = [g(x)][h(x)]$ is divisible by $g_1(x)^2$, so $[x^n - 1]$ is divisible by $g_1(x)^2$. A polynomial is divisible by a square of another polynomial must have common divisors with its derivative (which is clear if we compute the derivative using the product rule), but the derivative of $x^n - 1$ is nx^{n-1}. Since n is not divisible by p, the only factors of $[nx^{n-1}]$ are powers of $[x]$, which are not divisors of $[x^n - 1]$. The contradiction completes the proof.

Our next goal is to demonstrate how to use cyclotomic polynomials to prove the following result (a particular case of the celebrated Dirichlet’s theorem):

Theorem 2. For every integer n, there exist infinitely many primes $p \equiv 1 \pmod{n}$.

Proof. At the core of the proof of this theorem is the following statement

For every integer n, there exist a integer $A > 0$ such that all prime divisors $p > A$ of values of $\Phi_n(c)$ at integer points c are congruent to 1 modulo n. In other words, prime divisors of values of the nth cyclotomic polynomial either are “small” or are congruent to 1 modulo n.

Let us explain how to use this statement to prove Theorem 2. Assume that there are only finitely many primes congruent to 1 modulo n; let p_1, \ldots, p_m be those primes. Let us consider the number $c = Ap_1 p_2 \cdots p_m$. The number $k = \Phi_n(c)$ is relatively prime to c (since $\Phi_n(x)$ divides $x^n - 1$, the constant term of $\Phi_n(x)$ divides the constant term of $x^n - 1$ and is hence equal to ± 1 for every n), so it is not divisible by any of the primes p_1, \ldots, p_m, and has no divisors $d \leq A$ either. This almost guarantees that we can find a new prime congruent to 1 modulo n: take any prime divisor p of k, and Lemma ensures that $p \equiv 1 \pmod{n}$. The only problem that may occur is that $k = \pm 1$, so it has no prime divisors. In this case, replace c by Nc for N large enough, so that Nc is greater than all the roots of the equation $\Phi_n(x) = 1$, with everything else remaining the same.

It remains to prove the statement we formulated. Let us consider the polynomial $f(x) = (x - 1)(x^2 - 1) \ldots (x^{n-1} - 1)$. The polynomials $f(x)$ and $\Phi_n(x)$ have no common roots, so their gcd in $\mathbb{Q}[x]$ is equal to 1, hence $a(x)f(x) + b(x)\Phi_n(x) = 1$ for some $a(x), b(x) \in \mathbb{Q}[x]$. Let A denote the common denominator of all coefficients of $a(x)$ and $b(x)$. Then for $p(x) = Aa(x), q(x) = Ab(x)$ we have $p(x)f(x) + q(x)\Phi_n(x) = A$, and $p(x), q(x) \in \mathbb{Z}[x]$. Assume that a prime number $p > A$ divides $\Phi_n(c)$ for some c. Then c is a root of $\Phi_n(x)$ modulo p, and consequently, $c^p \equiv 1 \pmod{p}$. Let us notice that n is the order of c modulo p. Indeed, if $c^k \equiv 1 \pmod{p}$ for some $k < n$, then c is a
root of \(f(x) \) modulo \(p \), but the equality \(p(x)f(x) + q(x)\Phi_n(x) = A \) shows that \(f(x) \) and \(\Phi_n(x) \) are relatively prime modulo \(p \). Recall that \(c^{p-1} \equiv 1 \pmod{p} \) by Fermat’s Little Theorem, so \(p - 1 \) is divisible by \(n \), the order of \(c \), that is \(p \equiv 1 \pmod{n} \), and the lemma is proved.

Remark. Most available proofs of Theorem 2 that use cyclotomic polynomials use a different proof of Lemma. The main point that is being made by our proof is that it seems to accumulate the key ideas of elementary number theory: the Euclidean algorithm and its applications, the relationship between \(\mathbb{Q}[x] \) and \(\mathbb{Z}[x] \), the techniques based on the reduction modulo \(p \), and the multiplicative group of integers modulo \(p \) (through Fermat’s Little Theorem).

Let us outline another application of cyclotomic polynomials, Wedderburn’s Little Theorem.

Theorem 3. Every finite division ring is commutative.

By a ring we mean a set \(R \) with two operations (sum and product) satisfying the usual axioms. The product does not have to be commutative, e.g. square matrices of the given size form a ring, and quaternions form a ring too. By a division ring we mean a ring where every nonzero element is invertible, e.g. quaternions. Thus, the theorem states that if \(R \) is a finite division ring, then it in fact is a field.

Let us recall several definitions from ring theory that we need in this proof.

For a ring \(R \), its centre \(Z(R) \) consists of all elements that commute with all elements from \(R \):

\[
Z(R) = \{ z \in R : zr = rz \text{ for all } r \in R \}.
\]

The centre of a ring is closed under sum and product, and so forms a subring of \(R \). If \(R \) is a division ring, then \(Z(R) \) is a field, and \(R \) is a vector space over this field.

More generally, if \(S \subset R \), the centraliser of \(S \) is defined as the set of all elements that commute with all elements from \(S \):

\[
C_S(R) = \{ z \in R : zs = sz \text{ for all } s \in S \}.
\]

The centraliser of every subset is a subring of \(R \), and in the case of a division ring, a field. Clearly, \(C_R(R) = Z(R) \).

The last ingredient of the proof we need is the class formula for finite groups. Let \(G \) be a finite groups. For \(g \in G \), denote by \(C(g) \) the conjugacy class of \(g \), that is the set of all elements of the form \(h^{-1}gh \), where \(h \in G \). Then \(G \) is a disjoint union of conjugacy classes. We have \(\#C(g) = \frac{\#G}{\#C_g} \), where \(C_g \) is the centraliser subgroup (consisting, as in the case of rings, of all elements that commute with \(g \)).

Proof. Our goal is to prove that \(Z(R) = R \). Let \(q = \#Z(R) \). Since \(R \) is a vector space over \(Z(R) \), we have \(\#R = q^n \), where \(n \) is the dimension of this vector space. Since \(R \) is a division ring, the set \(G = R \setminus \{0\} \) is a group. Applying the class formula to this group, we obtain

\[
q^n - 1 = \sum_{\text{conjugacy classes}} \#C(g) = \sum_{\text{conjugacy classes}} \frac{q^n - 1}{\#C_g}.
\]

Let us look closer at this sum. It contains terms corresponding to conjugacy classes consisting of a single element (these are conjugacy classes of nonzero elements from the centre) and all other conjugacy classes. Every centraliser \(C_g \) of such a conjugacy class, with the zero element adjoined to it, forms a subring of \(R \) containing \(Z(R) \), that is a vector space over \(Z(R) \). Let \(n_g \) be the dimension of that vector space, \(n_g < n \). We have

\[
q^n - 1 = q - 1 + \sum_{\text{non-central conjugacy classes}} \frac{q^n - 1}{q^{n_g} - 1}.
\]
It is easy to see that $\frac{q^n-1}{\phi(q^n-1)}$ is an integer only if n_q divides n (and that in general $\gcd(q^n-1,q^k-1) = q^{\gcd(n,k)} - 1$), so in fact not only $\frac{q^n-1}{\phi(q^n-1)}$ is an integer but also $\frac{x^n-1}{\phi(x^n-1)}$ is a polynomial with integer coefficients. As polynomials in x, $x^{n_q} - 1$ and $\Phi_n(x)$ are coprime, so $x^n - 1$ is divisible by their product. This means that in our equality above all terms except for the term $q - 1$ are divisible by $\Phi_n(q)$. Thus $q - 1$ is divisible by $\Phi_n(q)$. But the latter is impossible for $n > 1$: $|q - \eta| > |q - 1|$ for all roots of unity $\eta \neq 1$, so $|\Phi_n(q)| = \prod_{\eta} |q - \eta| > |q - 1|$. This completes the proof. □