
MA2316: Introduction to Number Theory
Tutorial problems for February 13, 2014

“Around the quadratic reciprocity”

Let n be an odd number, and let n = p1p2 · · ·pk be its prime decomposition (possibly with
repeated factors). Let us define the Jacobi symbol

(

a
n

)

by the formula

(a

n

)

=

(

a

p1

)(

a

p2

)

· · ·

(

a

pk

)

.

1. Give an example of a and n for which
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= 1 but a is not congruent to a square
modulo n.

2. Show that for Jacobi symbols we have
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whenever

n,n1, n2 are odd.
3. Show that if m and n are odd integers, then mn−1
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2 (mod 2). Explain why

it implies that for each odd n we have
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4. Show that for any two coprime odd integers m,n we have
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5. Applying previous problem with m = n + 2, show that for each odd n we have
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8 .
6. Show that all prime divisors of 9n2 + 3n + 1 are of the form 3k+ 1.
7. Let p be an odd prime number.
(a) Show that the function k 7→ 1−k

1+k maps the set (Z/pZ) \ {−1} to itself and is a 1-to-1
correspondence.

(b) Compute the sum
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.

8. Find the number of solutions to the equation x2 + y2 = 1 in Z/pZ. (Hint : this number

is equal to
∑p−1

y=0(1 +
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)).


