
MA2316: solutions to (part B of) study week challenge
1. Note that

233+ 387i

103+ 363i
=

320

277
−

87

277
i ≈ 1,

so the first round of the Euclidean algorithm tells us that

gcd(103+363i, 233+387i) = gcd(103+363i, 233+387i−103−363i) = gcd(103+363i, 130+24i).

Furthermore,
103+ 363i

130+ 24i
=

43

34
+

87

34
≈ 1+ 3i,

so the second round of the Euclidean algorithm tells us that

gcd(103+363i, 130+24i) = gcd(130+24i, 103+363i−(130+24i)(1+3i)) = gcd(130+24i, 45−51i).

One further step gives us
130+ 24i

45− 51i
= 1+

5

3
i ≈ 1+ 2i,

so

gcd(130+24i, 45−51i) = gcd(45−51i, 130+24i−(45−51i)(1+2i)) = gcd(45−51i,−17−15i).

Since 45− 51i = (−17− 15i)(−3i), we conclude that

gcd(103+ 363i, 233+ 387i) = −17− 15i

(or one of the Gaussian integers differing from that by an invertible factor).
2. Recall that a number is congruent to the sum of its decimal digits modulo 9, so

n23 ≡ 3+ 7+ 9+ 2+ 6+ 4+ 3+ 4+ 8+ 8+ 0+ 0+ 6+ 8+ 2+ 9+ 8+ 9+ 3+ 2+ 2+ 1+ 3+ 9+

+ 9+ 4+ 4+ 0+ 9+ 9+ 2+ 2+ 1+ 4+ 6+ 0+ 4+ 5+ 4+ 4+ 3+ 1+ 1 ≡ 8 ≡ −1 (mod 9).

Also, we trivially have n23 ≡ 1 (mod 10), since the last decimal digit of n23 is 1.
Note that if n is not coprime to 9, then n23 is not coprime to 9, which we know is not the

case, as n23 ≡ −1 (mod 9). Also, if n is not coprime to 10, then n23 is not coprime to 10, which
we know is not the case, as n23 ≡ 1 (mod 10).

We have ϕ(10) = ϕ(2)ϕ(5) = 4, so for each x coprime to 10 we have x4 ≡ 1 (mod 10) by
Euler’s theorem, and hence x24 = (x4)6 ≡ 1 (mod 10). Therefore, n23 ≡ n−1 (mod 10), and we
conclude that n−1 ≡ 1 (mod 10), which in turn implies n ≡ 1 (mod 10).

Also, ϕ(9) = 9 − 3 = 6, so for each x coprime to 3 we have x6 ≡ 1 (mod 9), and hence
x24 = (x6)4 ≡ 1 (mod 9). Therefore, −1 ≡ n23 ≡ n−1 (mod 9), and n ≡ −1 (mod 9). We
conclude that {

n ≡ 1 (mod 10),

n ≡ −1 (mod 9).

Solving this system of congruences, we get n ≡ 71 (mod 90). If n > 71, then n > 161 > 100,
so n23 has at least 46 digits. We conclude that n = 71.

3. Note that 507 = 3 · 132, so in order to solve this congruence, we should solve it modulo
3, solve it modulo 13, lift the solution modulo 13 in Z/132Z, and merge the result with the
modulo 3 answer using the Chinese Remainder Theorem.

First of all, by inspection we see that x = 1 is the only solution modulo 3. As for modulo
13, we note that 32 + 3 + 1 = 13, so 3 is a solution, and since the sum of roots of a quadratic



equation is the negative of the coefficient at x, we conclude that −1− 3 ≡ 9 (mod 13) is also a
solution. Let us now lift these modulo 132. Note that (x2+x+1) ′ = 2x+1, so it does not vanish
for x = 3 or for x = 9, and hence Hensel’s lemma guarantees that the lifts of roots modulo 132

exist and are unique. We have

(3+ 13k)2 + (3+ 13k) + 1 ≡ 9+ 2 · 3 · 13k+ 3+ 13k+ 1 ≡ 13(1+ 7k) (mod 132),

so k = 11 works, and 146 is a root modulo 132. Also,

(9+ 13k)2 + (9+ 13k) + 1 ≡ 81+ 2 · 9 · 13k+ 9+ 13k+ 1 ≡ 13(7+ 6k) (mod 132),

so k = 1 works, and 22 is a root modulo 132. Finally, we need to combine it with x ≡ 1 (mod 3).
Since 132 · 1+ 3 · (−56) = 1, we conclude that 1 · 132 · 1+ 22 · 3 · (−56) = −3527 ≡ 22 (mod 507)
and 1 · 132 · 1+ 146 · 3 · (−56) = −24359 ≡ 484 (mod 507) are the only solutions.

Remark: one can note that we have 9 = 32 for solutions modulo 13 and 484 = 222 for solu-
tions modulo 507, even further, we have 146 ≡ 222 (mod 132). It is not completely coincidental,
since x2 + x + 1 = 0 means that x3 = 1, and if a is a root of this equation, then a2 is clearly
also a root.

4. Note that modulo 2 this solution has a solution x = 1, so in what follows we assume p

odd. First of all, x4 = (x2)2, so if the congruence x4 ≡ −1 (mod p) has solutions, then x2 ≡ −1

(mod p) also has solutions. We know that
(
−1
p

)
= (−1)

p−1
2 , so we conclude that p ≡ 1 (mod 4),

p = 4m + 1. Now, for such x let a be such that a2 ≡ −1 (mod p), so the congruence x4 ≡ −1

(mod p) becomes x4 ≡ a2 (mod p), that is x2 ≡ a (mod p) or x2 ≡ −a ≡ a3 (mod p). Thus,

our equation has solutions if
(
a
p

)
= 1. We recall that

(
a
p

)
≡ a

p−1
2 (mod p), so(

a

p

)
≡ a2m ≡ (a2)m ≡ (−1)m (mod p),

and we conclude that for odd p the congruence x4 ≡ −1 (mod p) has solutions if and only p ≡ 1

(mod 8).


