MA2316: solutions to (part B of) study week challenge

1. Note that
233 4+ 3871 B 320 87

103+3631 277 277"
so the first round of the Euclidean algorithm tells us that

1,

gcd(103+3631,233+3871) = ged(103+3631, 233 +387i—103—3631) = ged(103+3631, 130+ 244).

Furthermore,
103 +3631 43 87

1301241 34 ' 34

so the second round of the Euclidean algorithm tells us that

~ 1+ 31,

gcd(10343631, 130-+241) = ged (1304244, 103+3631—(130+241) (1+31)) = ged (130+241, 45—514).

One further step gives us

7]3O+24i—1+§i~1+21
45—-511 3 ’

SO
ged(130+ 244,45 —511) = ged(45—511, 1304241 — (45 —511)(1+21)) = ged(45—511,—17—151).
Since 45 — 511 = (=17 — 151)(—31), we conclude that

ged(103 + 3631,233 + 387i) = —17 — 151

(or one of the Gaussian integers differing from that by an invertible factor).
2. Recall that a number is congruent to the sum of its decimal digits modulo 9, so

nB=3474+94+2+6+4+3+4+8+8+0+0+6+8+2+9+8+9+3+2+2+1+3+9+
F94 4444049494242+ 1444640+4+5+44443+1+1=8=-1 (mod 9).

Also, we trivially have n?> =1 (mod 10), since the last decimal digit of n% is 1.

Note that if n is not coprime to 9, then n% is not coprime to 9, which we know is not the
case, as % = —1 (mod 9). Also, if n is not coprime to 10, then n?3 is not coprime to 10, which
we know is not the case, as n*3 =1 (mod 10).

We have @(10) = @(2)@(5) = 4, so for each x coprime to 10 we have x* = 1 (mod 10) by
Euler’s theorem, and hence x** = (x*)® = 1 (mod 10). Therefore, n?> =n~' (mod 10), and we

conclude that n~!' =1 (mod 10), which in turn implies n = 1 (mod 10).
Also, @(9) = 9 —3 = 6, so for each x coprime to 3 we have x® = 1 (mod 9), and hence
x# = (x9)* = 1 (mod 9). Therefore, —1 = 3 = n~! (mod 9), and n = —1 (mod 9). We

conclude that

n=1 (mod 10),
n=-1 (mod?9).

Solving this system of congruences, we get n = 71 (mod 90). If n > 71, then n > 161 > 100,
so n® has at least 46 digits. We conclude that n = 71.

3. Note that 507 = 3 - 132, so in order to solve this congruence, we should solve it modulo
3, solve it modulo 13, lift the solution modulo 13 in Z/13%°Z, and merge the result with the
modulo 3 answer using the Chinese Remainder Theorem.

First of all, by inspection we see that x = 1 is the only solution modulo 3. As for modulo
13, we note that 32 +3 41 = 13, so 3 is a solution, and since the sum of roots of a quadratic



equation is the negative of the coefficient at x, we conclude that —1 —3 =9 (mod 13) is also a
solution. Let us now lift these modulo 13%2. Note that (x?+x+1)" = 2x+1, so it does not vanish
for x = 3 or for x = 9, and hence Hensel’s lemma guarantees that the lifts of roots modulo 132
exist and are unique. We have

(B3+13k)?>+(3+13k)+1=9+2-3-13k+3+13k+1=13(14+7k) (mod 13%),
so k = 11 works, and 146 is a root modulo 132. Also,
(9+13K)2+ (9+13k)+1=8142-9-13k+9+ 13k +1=13(7+6k) (mod 13%),

so k = 1 works, and 22 is a root modulo 13%. Finally, we need to combine it with x = 1 (mod 3).
Since 132-143-(=56) = 1, we conclude that 1-13%2-1+422-3-(—56) = —3527 = 22 (mod 507)
and 1-13%.14146-3 - (—56) = —24359 = 484 (mod 507) are the only solutions.

Remark: one can note that we have 9 = 32 for solutions modulo 13 and 484 = 22?2 for solu-
tions modulo 507, even further, we have 146 = 22? (mod 132). It is not completely coincidental,
since x2 +x + 1 = 0 means that x> = 1, and if a is a root of this equation, then a? is clearly
also a root.

4. Note that modulo 2 this solution has a solution x = 1, so in what follows we assume p

odd. First of all, x* = (x?)?, so if the congruence x* = —1 (mod p) has solutions, then x* = —1
(mod p) also has solutions. We know that (%) = (-1 )%, so we conclude that p =1 (mod 4),
p =4m + 1. Now, for such x let a be such that a*> = —1 (mod p), so the congruence x* = —

2=

(mod p) becomes x* = a? (mod p), that is x> = a (mod p) or x —a = a® (mod p). Thus,

our equation has solutions if (%) = 1. We recall that (%) =ad’T (mod p), so

(“) =™ = ()" = (-1 (mod p),
P
and we conclude that for odd p the congruence x* = —1 (mod p) has solutions if and only p = 1

(mod 8).



