1. For the space \mathbb{R}^3 with the standard scalar product, find the orthogonal basis e_1, e_2, e_3 obtained by Gram–Schmidt orthogonalisation from $f_1 = \begin{pmatrix} 1 \\ 3 \\ 3 \end{pmatrix}$, $f_2 = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$, $f_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

2. Show that the formula

$$\left(\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \begin{pmatrix} x_2 \\ y_2 \end{pmatrix}\right) = x_1 x_2 + \frac{1}{2}(x_1 y_2 + x_2 y_1) + y_1 y_2.$$

defines a scalar product on \mathbb{R}^2, and find an orthonormal basis of \mathbb{R}^2 with respect to that scalar product.

3. For the vector space of all polynomials in t of degree at most 3 and the scalar product on this space given by

$$(p(t), q(t)) = \int_{-1}^{1} p(t)q(t) \, dt,$$

find the result of Gram–Schmidt orthogonalisation of the vectors $1, t, t^2, t^3$.

Optional question: Show that in \mathbb{R}^n, it is impossible to find $n + 2$ vectors that only form obtuse angles (that is, $(v_i, v_j) < 0$ for all $i \neq j$).