1112: Linear Algebra II
Selected final exam questions from past years

April 2, 2019

1. (a) Find all eigenvalues and eigenvectors of the matrix
 \[B = \begin{pmatrix} -4 & -4 \\ 1 & 0 \end{pmatrix}. \]

 (b) Find the Jordan normal form of the matrix \(B \) from the previous question, and a matrix \(C \) that transforms \(B \) to its Jordan normal form.

 (c) Find a formula for \(B^n \), and use it to find a formula for the \(n \)-th term of the sequence defined recursively by \(a_0 = 2, a_1 = 1, a_{n+1} = -4a_n - 4a_{n-1} \).

2. In the vector space of all polynomials in \(t \) of degree at most 2 with the scalar product
 \[(p(t), q(t)) = \int_{-1}^{1} p(t)q(t) \, dt, \]
 find the orthogonal basis which is the output of the Gram-Schmidt orthogonalisation applied to the basis \(2 + 3t, t^2 - 1, t - 1 \).

3. (a) Formulate the Sylvester’s criterion for a quadratic form to be positive definite.

 (b) Determine all values of the parameter \(a \) for which the quadratic form
 \[q(xe_1 + ye_2 + ze_3) = (18 + a)x^2 + 3y^2 + az^2 + 10xy - (8 + 2a)yz - 4yz \]
 is positive definite.

4. Is the subspace \(U \) of \(\mathbb{R}^4 \) spanned by
 \[\begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} \]
 and
 \[\begin{pmatrix} -2 \\ -1 \\ -1 \\ 1 \end{pmatrix} \]
 an invariant subspace of the operator \(A \) whose matrix relative to the standard basis is
 \[\begin{pmatrix} 0 & 3 & -3 & -1 \\ 1 & 3 & -1 & 0 \\ 7 & 12 & 2 & 3 \\ -3 & -6 & 0 & -1 \end{pmatrix}. \]
 Explain your answer.

5. (a) Find all eigenvalues and eigenvectors of the matrix
 \[B = \begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}. \]

 (b) Find the Jordan normal form of the matrix \(B \), and a matrix \(C \) which is the transition matrix of some Jordan basis of \(B \).
(c) Find a formula for B^n, and use it to find a closed formula for the nth terms of the sequences \(\{x_m\}, \{y_m\} \) defined recursively as follows:

\[
\begin{align*}
x_0 &= 1, \quad y_0 = -5, \\
x_{k+1} &= x_k - y_k, \quad y_{k+1} = x_k + 3y_k.
\end{align*}
\]

6. (a) Which bases of a Euclidean space V are called orthogonal? orthonormal?

(b) Show that the $f_1 = \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}$, $f_2 = \begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix}$, and $f_3 = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$ form a basis of \mathbb{R}^3.

(c) Find the orthogonal basis of \mathbb{R}^3 which is the output of the Gram-Schmidt orthogonalisation applied to the basis from the previous question. (The scalar product on the \mathbb{R}^3 is the standard one.)

7. (a) Write down the definition of a bilinear form on a real vector space. Which symmetric bilinear forms are said to be positive definite?

(b) Consider the vector space V of all polynomials in t of degree at most 2. The bilinear form ψ_a on V (depending on a [real] parameter a) is defined by the formula

\[
\psi_a(f(t), g(t)) = \int_{-1}^{1} f(t)g(t)(t-a) \, dt.
\]

Determine all values of a for which ψ_a is positive definite.

8. (a) Determine the Jordan normal form and find some Jordan basis for the matrix

\[
A = \begin{pmatrix} 3 & -4 & 6 \\ 1 & -5 & 3 \\ 0 & -4 & 1 \end{pmatrix}
\]

(b) Find a closed formula for A^n.

9. (a) Write down the definition of a Euclidean vector space.

(b) The function $f_a : \mathbb{R}^3 \times \mathbb{R}^3 \rightarrow \mathbb{R}$ (depending on a real parameter a) is defined by the formula

\[
f_a(x_1 e_1 + x_2 e_2 + x_3 e_3, y_1 e_1 + y_2 e_2 + y_3 e_3) = 2x_1 y_1 + (x_1 y_2 + x_2 y_1) + (2a - 1)x_2 y_2 - a(x_1 y_3 + x_3 y_1) - (x_2 y_3 + x_3 y_2) + x_3 y_3
\]

(here e_1, e_2, e_3 is a basis of \mathbb{R}^3). Determine all values of a for which f_a is a scalar product.

10. Let V be a vector space. Show that for every two linear operators $A : V \rightarrow V$ and $B : V \rightarrow V$ we have

\[
\text{rk}(AB) \leq \text{rk}(A) \quad \text{and} \quad \text{rk}(AB) \leq \text{rk}(B).
\]

Show that if B is invertible, then $\text{rk}(BA) = \text{rk}(A)$, and give an example showing that this equality might hold even if B is not invertible.

11. (a) Determine the Jordan normal form and find some Jordan basis for the matrix

\[
A = \begin{pmatrix} 9 & 5 & 2 \\ -16 & -9 & -4 \\ 2 & 1 & 1 \end{pmatrix}
\]

(b) Find a closed formula for A^n.
12. (a) A quadratic form Q on the space \mathbb{R}^3 is defined by the formula
\[
Q(xe_1 + ye_2 + ze_3) = (20 + 4a)x^2 + 12(1 + a)xz + 6y^2 + 3z^2.
\]
Find all values of the parameter a for which this form is positive definite.

13. A square matrix A (of some size $n \times n$) satisfies the condition
\[
A^2 - 8A + 15I = 0.
\]
(a) Show that this matrix is similar to a diagonal matrix.
(b) Show that for every positive integer $k \geq 8$ there exists a matrix A satisfying the above condition with $\text{tr}(A) = k$.

14. (a) Determine the Jordan normal form and find some Jordan basis for the matrix
\[
A = \begin{pmatrix} 2 & -5 & 3 \\ 2 & -6 & 4 \\ 3 & -9 & 6 \end{pmatrix}.
\]
(b) Find a closed formula for A^n.

15. (a) A quadratic form Q on the three-dimensional space with a basis e_1, e_2, e_3 is defined by the formula
\[
Q(xe_1 + ye_2 + ze_3) = 3x^2 + 2axy + (2 - 2a)xz + (a + 2)y^2 + 2ayz + 3z^2
\]
Find all values of the parameter a for which this form is positive definite.

16. In the vector space $V = \mathbb{R}^5$, consider the subspace U spanned by the vectors
\[
\begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}, \quad \begin{pmatrix} -4 \\ -12 \\ 6 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix}
\]
(a) Compute $\dim U$.
(b) Which of the vectors $\begin{pmatrix} 4 \\ 0 \\ -3 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 2 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, and $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ belong to U?

17. Consider the matrices
\[
A = \begin{pmatrix} 2 & 3 & 4 \\ -2 & -2 & -2 \\ 1 & 1 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]
(a) Describe the Jordan normal form and find some Jordan basis for A.
(b) Is A similar to B? Is A^2 similar to B? Explain your answers.

18. Consider the vector space V of all $n \times n$-matrices, and define a bilinear form on this space by the formula $(A, B) = \text{tr}(AB^T)$.
(a) Show that this bilinear form is a scalar product on the space of all matrices.
(b) Show that with respect to that scalar product the subspace of all symmetric matrices (matrices A with $A = A^T$) is the orthogonal complement of the space of all skew-symmetric matrices (matrices A with $A = -A^T$).

19. Does there exist a 9×9-matrix B for which the matrix B^2 has the Jordan normal form with blocks of sizes 4,3,2 appearing once, each block with the eigenvalue 0? Same question for the block sizes 4,4,1.