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Lecture 3

Let us mention one consequence of the rank-nullity theorem from the previous class.

Proposition 1. For any linear map ϕ : V → W, we have rk(ϕ) 6 min(dim(V),dim(W)).

Proof. We have rk(ϕ) 6 dim(W) because Im(ϕ) ⊂ W, and the dimension of a subspace cannot exceed the
dimension of the whole space. Also, rk(ϕ) = dim(V) − null(ϕ) 6 dim(V).

(Alternatively, one can argue that being the number of pivots in the reduced row echelon form, the rank
cannot exceed either the number of rows or the number of columns, but this proof shows some other useful
techniques, so we mention it here).

As we mentioned last time, the rank-nullity theorem and its proofs actually tells us precisely how to
simplify matrices of most general linear maps ϕ : V → W. If we allowed to change bases of V and W
independently, then the rank is the only invariant: every m × n-matrix A can be brought to the form(

Il 0(n−l)×l
0k×(m−l) 0(n−l)×(m−l)

)
, where l = rk(ϕ). However, if we restrict ourselves to linear transformations

ϕ : V → V, then we can only change one basis, and under the changes we replace matrices A by C−1AC,
where C is the transition matrix. We know several things that remain the same under this change, e.g. the
trace and the determinant, so the story gets much more subtle. We shall discuss it in the following lectures.
Today we shall focus on one new structural notion, that of the sum and the direct sum of subspaces of a
vector space.

Sums and direct sums

Let V be a vector space. Recall that the span of a set of vectors v1, . . . , vk ∈ V is the set of all linear
combinations c1v1 + . . . + ckvk. It is denoted by span(v1, . . . , vk). Also, vectors v1, . . . , vk are linearly
independent if and only if they form a basis of their linear span. Our next definition provides a generalisation
of these two sentences to the case of arbitrary subspaces, rather than vectors.

Definition 1. Let V1, . . . , Vk be subspaces of V. Their sum V1 + . . . + Vk is defined as the set of vectors
of the form v1 + . . . + vk, where v1 ∈ V1, . . . , vk ∈ Vk. The sum of the subspaces V1, . . . , Vk is said to be
direct if 0+ . . .+ 0 is the only way to represent 0 ∈ V1 + . . .+ Vk as a sum v1 + . . .+ vk. In this case, it is
denoted by V1 ⊕ . . .⊕ Vk.

Lemma 1. V1 + . . .+ Vk is a subspace of V.

Proof. It is sufficient to check that V1 + . . . + Vk is closed under addition and multiplication by numbers.
Clearly,

(v1 + . . .+ vk) + (v ′1 + . . .+ v ′k) = ((v1 + v ′1) + . . .+ (vk + v ′k))

and
c(v1 + . . .+ vk) = ((cv1) + . . .+ (cvk)),

and the lemma follows, since each Vi is a subspace and hence closed under the vector space operations.
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Example 1. Consider the subspaces Un and Um of Rn+m, the first one being the linear span of the first
n standard unit vectors, and the second one being the linear span of the last m standard unit vectors. We
have Rn+m = Un +Um = Un ⊕Um.

Example 2. For a collection of nonzero vectors v1, . . . , vk ∈ V, consider the subspaces V1,. . . ,Vk, where Vi

consists of all multiples of vi. Then, clearly, V1 + . . . + Vk = span(v1, . . . , vk), and this sum is direct if and
only if the vectors vj are linearly independent.

Example 3. For two subspaces V1 and V2, their sum is direct if and only if V1 ∩ V2 = {0}. Indeed, if
v1 + v2 = 0 is a nontrivial representation of 0, v1 = −v2 is in the intersection, and vice versa. The situation
of three and more subspaces is more subtle.

Theorem 1. If V1 and V2 are subspaces of V, we have

dim(V1 + V2) = dim(V1) + dim(V2) − dim(V1 ∩ V2).

In particular, the sum of V1 and V2 is direct if and only if dim(V1 + V2) = dim(V1) + dim(V2).

It is important to note that an analogue of this theorem for three or more subspaces is not available,
contrary to what intuition from combinatorics of finite sets may suggest to us.

Proof. Let us pick a basis e1, . . . , ep of the intersection V1 ∩ V2, and extend this basis to a bigger set of
vectors in two different ways, one way obtaining a basis of V1, and the other way — a basis of V2. Let
e1, . . . , ek, f1, . . . , fq and e1, . . . , ek, g1, . . . , gr be the resulting bases of V1 and V2 respectively. Let us prove
that

e1, . . . , ep, f1, . . . , fq, g1, . . . , gr

is a basis of V1+V2. It is a complete system of vectors, since every vector in V1+V2 is a sum of a vector from
V1 and a vector from V2, and vectors there can be represented as linear combinations of e1, . . . , ep, f1, . . . , fq
and e1, . . . , ep, g1, . . . , gr respectively. To prove linear independence, let us assume that

a1e1 + . . .+ apep + b1f1 + . . .+ bqfq + c1g1 + . . .+ crgr = 0.

Rewriting this formula as a1e1 + . . .+ apep + b1f1 + . . .+ bqfq = −(c1g1 + . . .+ crgr), we notice that on
the left we have a vector from V1 and on the right a vector from V2, so both the left hand side and the right
hand side is a vector from V1 ∩ V2, and so can be represented as a linear combination of e1, . . . , ep alone.
However, the vectors on the right hand side together with ei form a basis of V2, so there is no nontrivial
linear combination of these vectors that is equal to a linear combination of ei. Consequently, all coefficients
ci are equal to zero, so the left hand side is zero. This forces all coefficients ai and bi to be equal to zero,
since e1, . . . , ep, f1, . . . , fq is a basis of V1. This completes the proof of the linear independence of the vectors
e1, . . . , ep, f1, . . . , fq, g1, . . . , gr.

Summing up, dim(V1) = p+ q, dim(V2) = p+ r, dim(V1 + V2) = p+ q+ r, dim(V1 ∩ V2) = p, and our
theorem follows.

In practice, it is important sometimes to determine the intersection of two subspaces, each presented as
a linear span of several vectors. This question naturally splits into two different questions.

First, it makes sense to find a basis of each of these subspaces. To determine a basis for a linear span
of given vectors, the easiest way is to form the matrix whose columns are the given vectors, and find
its reduced column echelon form (like the reduced row echelon form, but with elementary operations on
columns). Nonzero columns of the result form a basis of the linear span subspace.

Once we know a basis v1,. . . , vk for the first subspace, and a basis w1, . . . , wl for the second one, the
question reduces to solving the linear system c1v1 + . . . + ckvk = d1w1 + . . . + dlwl. For each solution to
this system, the vector c1v1 + . . .+ ckvk is in the intersection, and vice versa. Computationally, this agrees
well with the first step, because computing the reduced column echelon form produces a system of equations
with many zero entries already. We shall discuss an example of a computation like that in the next lecture.
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