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Orthogonal matrices
Definition 1. An n x n-matrix A is said to be orthogonal if ATA=1. (Or, equivalently, if AT = A71,

Note that another way to state the same is to remark that the columns of A form an orthonormal
basis. Indeed, the entries of AT A are pairwise scalar products of columns of A.

Theorem 1. A matrix A is orthogonal if and only if the associated linear transformation ¢ does not change
the scalar product, that is for all x, y € R" we have

(px), (M) =(x,).

Proof. We have
(@), 0(1) = (Ax, Ay) = (Ap)T Ax = yT AT Ax = (AT Ax, ).

Clearly, (AT Ax,y) = (x,y) for all x, y if and only if (AT A- I)x, y) = 0 for all x, y, and the latter happens
only for ATA-T=0. O

This latter result has the advantage of being coordinate-independent: it allows to define an orthogo-
nal linear transformation of an arbitrary Euclidean space as a transformation for which (¢(x), ¢ (y)) = (x, )
for all vectors x, y. This means that such a transformation preserves geometric notions like lengths and
angles between vectors.

Comparing determinants of AT’ A and I, we conclude that for an orthogonal matrix A, we have
det(A)? = 1, so det(A) = +1. Intuitively, orthogonal matrices with det(A) = 1 are transformations that can
distinguish between left and right, or clockwise and counterclockwise (like rotations), and orthogonal
matrices with det(A) = —1 are transformations that swap clockwise with counterclockwise (like mirror
symmetry). This intuition is supported by the following examples.

b
Example 1. Let A be an orthogonal 2 x 2-matrix with det(A) = 1. We have A = (? d) with a? + ¢? = 1,

b?> +d? =1, ab+ cd = 0. There exist some angle « such that a = cosa, ¢ = sina, and the vector

b) is an
d

b —sina . .
orthogonal vector of length 1, so ( d) == ( cosa ) Because of the determinant condition,

A= cosa -—sina
“\sina cosa )’

which is the matrix of the rotation through a about the origin.



Example 2. Let us consider an orthogonal 3 x 3-matrix A with det(A) = 1. We have
yat) =det(A—tD) =det(A) +art+at> — 2 =1+ajt+ast* — .

Clearly, y4(0) =1, and y a(t) is negative for large ¢, so by continuity, y 4(¢) has a real root, and A has a real
eigenvalue 1. Let v be such that Av = Av. Then (v,v) = (Av, Av) = (Av,Av) = A2(v,v),s0 A2 = 1. If A =1,
we are done. Otherwise, our operator has an eigenvalue —1, and yA(t) = (1 + )(1 + at — t2), where the
polynomial 1+ at— t> must have real roots, so all eigenvalues of A in this case must be real. The product
of the eigenvalues is equal to the determinant, so all of them cannot be equal to —1, and this operator
has an eigenvalue 1.

If Av = v, then span(v)l is an invariant subspace, where our operator defines a linear operator whose
matrix relative to an orthonormal basis is orthogonal and has determinant 1, therefore is a rotation.
Consequently, our original matrix represents a rotation about the line containing v.

Hermitian vector spaces

We would like to adapt to the case of complex numbers some of the results that we proved before. How-
ever, we started with defining scalar products, and for complex numbers, the notion of a positive number
does not make sense. So we have to be a bit more imaginative.

Definition 2. A vector space V over complex numbers is said to be a Hermitian vector space if it is
equipped with a function (Hermitian scalar product) V x V — C, vy, v2 — (v1, 2) satisfying the following
conditions:

e sesquilinearity: (v; + v2,v) = (11, V) + (v2, V), (v, V1 + 12) = (v, 11) + (v, v2), (cvy, V2) = c(vy, v2), and
(v1,cv2) =¢c(v1, v2),

e symmetry: (vy, v2) = (v2, v1) for all vy, v (in particular, (v, v) € R for all v),

* positivity: (v, v) =0 for all v, and (v, v) =0 only for v = 0.

Example 3. Let V = C" with the standard scalar product

X1 N

X2 Y2 _ _ _
( bl )=X1Y1+ X2, + + XnY .

Xn Yn

All the three properties from the definition of a Hermitian space are trivially true.

Lemma 1. For every Hermitian scalar product and every basis ey, ..., e, of V, we have

n
(x1e1+...+xpep, y1€1+...+ yney) = Z aijxi?j,
ij=1

where a;; = (e;, ej).

This follows immediately from the sesquilinearity property of Hermitian scalar products.



