
MA 1111: Linear Algebra I
Tutorial problems, October 19, 2018

In problems 1–4, determine whether the system of vectors {vi} in the vector space V

(a) is linearly independent; (b) complete; (c) forms a basis.

1. V = R2, v1 =

(
−1

1

)
, v2 =
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.

2. V = R2, v1 =
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1

)
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(
2

1

)
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)
.

3. V = R3, v1 =

 2
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, v2 =
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, v3 =

−1

−1

2
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.

4. V = R3, v1 =

0

1

1

, v2 =

1

0
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, v3 =

1

1

0

.

5. (a) Prove that if the system of vectors u, v, w of some vector space is linearly
independent, then the system of vectors u−2w, v+w, w is linearly independent as well.

(b) Prove that if the system of vectors u, v, w of some vector space is complete, then
the system of vectors u− 2w, v+w, w is complete as well.


