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In the example we considered in the previous class, one of the two matrices is much simpler than the
other ones: the first matrix is diagonal, which simplifies all sorts of computations. We already mentioned
that for linear operators we cannot simplify a matrix as much as for linear maps. It is natural to ask whether
we may make the corresponding matrix diagonal. Let us show that it is not possible in general. Consider

the matrix

(
1 1
0 1

)
. If there exists an invertible matrix C for which C−1

(
1 1
0 1

)
C =

(
a1 0
0 a2

)
, we can

compare traces on the right and on the left, getting a1 + a2 = 2, a1a2 = 1, so a1 and a2 are roots of the

equation x2 − 2x + 1 = 0, that is a1 = a2 = 1. But the diagonal matrix

(
1 0
0 1

)
is the identity matrix,

and it represents the map that does not change any vector, so it is the same in any coordinate system, a
contradiction.

However, this turns out to be the only source of obstacles. Before we proceed with that, let us introduce
a linear algebra context for Fibonacci numbers.

Fibonacci numbers are defined recursively: f0 = 0, f1 = 1, fn+1 = fn + fn−1 for n > 1, so that this
sequence starts like this:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

We shall now explain how to derive a formula for these using linear algebra.
Idea 1: let us consider a much simpler question: let g0 = 1, and gn = agn−1 for n > 1. Then of course

gn = an.
In our case, each of the numbers is determined by two previous ones, let us store pairs! We put

vn =

(
fn

fn+1

)
.

Then

vn =

(
fn

fn+1

)
=

(
fn

fn + fn−1

)
=

(
0 1
1 1

)(
fn−1

fn

)
=

(
0 1
1 1

)
vn−1,

therefore

vn =

(
0 1
1 1

)
vn−1 =

(
0 1
1 1

)(
0 1
1 1

)
vn−2 = · · · =

(
0 1
1 1

)n

v0 =

(
0 1
1 1

)n(
0
1

)
.

Therefore, we shall be able to compute Fibonacci numbers if we can compute the n-th power of the matrix

A =

(
0 1
1 1

)
.

Idea 2: What does it mean for a matrix of a linear operator ϕ to be diagonal in the system of coordinates
given by the basis e1, e2? This means ϕ(e1) = a1e1, ϕ(e2) = a2e2. Let us state the relevant general
definitions, and then return to our specific question.

Definition 1. For a linear operator ϕ : V → V, a nonzero vector v satisfying ϕ(v) = c · v for some scalar c
is called an eigenvector of ϕ. The number c is called an eigenvalue of ϕ.

There is the following general important result.
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Lemma 1. Let ϕ be a linear operator. There exists a basis e1, . . . , en relative to which ϕ has a diagonal
matrix if and only if there exists a basis consisting of eigenvectors of ϕ.

The proof is trivial: the two statements literally mean the same. But conceptually, there is an important
difference: instead of looking for the change of basis arbitrarily, we should look for eigenvectors. For that,
we need a convenient criterion for eigenvalues.

Lemma 2. Let ϕ be a linear operator, and let A be the matrix of ϕ relative to some basis e1, . . . , en. A
number c is an eigenvalue of ϕ if and only if det(A− cIn) = 0.

Proof. Suppose that c is an eigenvalue, which happens if and only if there exists a nonzero vector v such
that ϕ(v) = c · v. In coordinates relative to the appropriate basis, A · ve = c · ve, or, in other words,
(A− cIn) · ve = 0. Therefore, c is an eigenvalue if and only if the system of equations (A− cIn) · x = 0 has a
nontrivial solution, which happens if and only if the matrix A− cIn is not invertible, which happens if and
only if det(A− cIn) = 0.

In general, to determine whether some matrix can be made diagonal by a change of basis, we should
write the equation det(A − cIn) = 0, find all eigenvalues, and then find the corresponding eigenvectors and
see if we can find enough of them to form a basis.

In our case, det(A− cI2) = 0 is the equation c2 − c− 1 = 0 so the eigenvalues are 1±
√
5

2
.

The corresponding eigenvectors are obtained from solutions of the systems of equations Ax = 1±
√
5

2
x. The

first of them has the general solution

(
x1

1+
√
5

2
x1

)
, and the second one has the general solution

(
x1

1−
√
5

2
x1

)
.

Setting in each cases x1 = 1, we obtain two eigenvectors e1 =

(
1

1+
√
5

2

)
and e2 =

(
1

1−
√
5

2

)
. The transition

matrix from the basis of standard unit vectors s1, s2 to this basis is, manifestly, Ms,e =

(
1 1

1+
√
5

2
1−
√
5

2

)
,

so

M−1
s,e = −

1√
5

(
1−
√
5

2
−1

−1−
√
5

2
1

)
,

Since Ae1 = (1+
√
5

2
)e1, and Ae2 = (1−

√
5

2
)e2, the matrix of the linear transformation ϕ relative to the basis

e1, e2 is

M−1
s,eAMs,e =

(
1+
√
5

2
0

0 1−
√
5

2

)
.

Therefore,

A = Ms,e

(
1+
√
5

2
0

0 1−
√
5

2

)
M−1

s,e,

and hence

An =

(
Ms,e

(
1+
√
5

2
0

0 1−
√
5

2

)
M−1

s,e

)n

= Ms,e

(
1+
√
5

2
0

0 1−
√
5

2

)n

M−1
s,e = Ms,e

(1+
√
5

2

)n
0

0
(

1−
√
5

2

)n
M−1

s,e.

Substituting the above formulas for Ms,e and M−1
s,e, we see that

An =

(
1 1

1+
√
5

2
1−
√
5

2

)(1+
√
5

2

)n
0

0
(

1−
√
5

2

)n
−

1√
5

(
1−
√
5

2
−1

−1−
√
5

2
1

)
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In fact, we have vn = Anv0, so

vn =

(
1 1

1+
√
5

2
1−
√
5

2

)(1+
√
5

2

)n
0

0
(

1−
√
5

2

)n
(− 1√

5

)(
1−
√
5

2
−1

−1−
√
5

2
1

)(
0
1

)
=

=

(
1 1

1+
√
5

2
1−
√
5

2

)(1+
√
5

2

)n
0

0
(

1−
√
5

2

)n
( 1√

5

− 1√
5

)
=

(
1 1

1+
√
5

2
1−
√
5

2

) 1√
5

(
1+
√
5

2

)n
− 1√

5

(
1−
√
5

2

)n
 =

=

 1√
5

((
1+
√
5

2

)n
−
(

1−
√
5

2

)n)
1√
5

((
1+
√
5

2

)n+1

−
(

1−
√
5

2

)n+1
)

Recalling that vn =

(
fn

fn+1

)
, we observe that

fn = −

(
1√
5

((
1+
√
5

2

)n

−
1−
√
5

2

)n)
.

As a little remark, since
∣∣∣1−√5

2

∣∣∣ < 1, for large n the n-th Fibonacci number is just the closest integer to

1√
5

(
1+
√
5

2

)n
.
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