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Previously on. . .

The vectors v1, . . . , vk are said to be linearly independent if the only linear
combination of this vector which is equal to the zero vector is the
combination where all coefficients are equal to 0. Otherwise those vectors
are said to be linearly dependent.

The vectors v1, . . . , vk are said to span Rn, or to form a complete set of
vectors, if every vector can be written as some linear combination of those
vectors.

We say that vectors v1, . . . , vk in Rn form a basis if they are linearly
independent and they span Rn.
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Previously on. . .

Let v1, . . . , vk be vectors in Rn. Consider the n × k-matrix A whose
columns are these vectors.

These vectors are linearly independent if and only if the reduced row
echelon form of A has a pivot in every column.

These vectors span Rn if and only if the reduced row echelon form of A
has a pivot in every row.

These vectors form a basis if and only if the reduced row echelon form of
A is In.
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Coordinates

Let e1, . . . , en be a basis of V . For a vector v , the scalars c1, . . . , cn for
which

v = c1e1 + c2e2 + · · ·+ cnen

are called the coordinates of v with respect to the basis e1, . . . , en.

This definition makes sense: each vector has (unique) coordinates.
Existence follows from the spanning property of a basis, uniqueness —
from the linear independence.

Let us take the vectors e1 =

(
1
0

)
and e2 =

(
1
1

)
, as the last time. These

vectors form a basis of R2. The coordinates of the vector v =

(
0
1

)
with

respect to this basis are given by the column ve =

(
−1
1

)
, because(

0
1

)
= −

(
1
0

)
+

(
1
1

)
.
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Subspaces of Rn

A non-empty subset U of Rn is called a subspace if the following
properties are satisfied:

whenever v ,w ∈ U, we have v + w ∈ U;

whenever v ∈ U, we have c · v ∈ U for every scalar c .

Of course, this implies that every linear combination of several vectors in
U is again in U.

Exercise: show that the zero vector is contained in any subspace.

Let us give some examples. Of course, there are two very trivial examples:
U = Rn and U = {0}.

Example 1: The line y = x in R2 is another example, since our basic
operations can only create vectors with equal coordinates.

Example 2: Any line or 2D plane containing the origin in R3 would also
give an example, and these give a general intuition of what the word
“subspace” should make one think of.

Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 14 5 / 10



Subspaces of Rn

A non-empty subset U of Rn is called a subspace if the following
properties are satisfied:

whenever v ,w ∈ U, we have v + w ∈ U;

whenever v ∈ U, we have c · v ∈ U for every scalar c .

Non-example 1: Consider all vectors v =

(
x
y

)
in R2 for which

x = y = 0 or x 6= y . The second property is satisfied but the first one fails

since

(
1
0

)
+

(
0
1

)
=

(
1
1

)
.

Non-example 2: Consider all vectors with both integer coordinates in
R2. The first property is satisfied, but the second one fails since

1
2

(
1
0

)
=

(
1
2
0

)
.

Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 14 6 / 10



Subspaces of Rn: two main examples
Let A be an m × n-matrix. Then the solution set to the homogeneous
system of linear equations Ax = 0 is a subspace of Rn. Indeed, it is
non-empty because it contains x = 0. We also see that if Av = 0 and
Aw = 0, then A(v + w) = Av + Aw = 0, and similarly if Av = 0, then
A(c · v) = c · Av = 0.

Let v1, . . . , vk be some given vectors in Rn. Their linear span
span(v1, . . . , vk) is the set of all possible linear combinations
c1v1 + . . . + ckvk . The linear span of k ≥ 1 vectors is a subspace of Rn.
Indeed, it is manifestly non-empty (contains the zero vector), and closed
under sums and scalar multiples.

The example of the line y = x from the previous slide fits into both
contexts. First of all, it is the solution set to the system of equations

Ax = 0, where A =
(
1 −1

)
, and x =

(
x
y

)
. Second, it is the linear span

of the vector v =

(
1
1

)
. We shall see that it is a general phenomenon:

these two descriptions are equivalent.
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Subspaces of Rn: two main examples

Consider the matrix A =

(
1 −2 1 0
3 −5 3 −1

)
, and the system of equations

Ax = 0. The reduced row echelon form of this matrix is

(
1 0 1 −2
0 1 0 −1

)
,

so the free unknowns are x3 and x4. Setting x3 = s, x4 = t, we obtain the

solution


−s + 2t

t
s
t

, which we can represent as s


−1
0
1
0

+ t


2
1
0
1

. We

conclude that the solution set to the system of equations is the linear span

of the vectors v1 =


−1
0
1
0

 and v2 =


2
1
0
1

.
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Subspaces of Rn: two main examples

Let us implement this approach in general. Suppose A is an m× n-matrix.

As we know, to describe the solution set for Ax = 0 we bring A to its
reduced row echelon form, and use free unknowns as parameters. Let xi1 ,
. . . , xik be free unknowns. For each j = 1, . . . , k , let us define the vector
vj to be the solution obtained by putting the j-th free unknown to be
equal to 1, and all others to be equal to zero.

Note that the solution that corresponds to arbitrary values xi1 = t1, . . . ,
xik = tk is the linear combination t1v1 + · · ·+ tkvk . Therefore the solution
set of Ax = 0 is the linear span of v1, . . . , vk .

Dr. Vladimir Dotsenko (Vlad) 1111: Linear Algebra I Lecture 14 9 / 10



Subspaces of Rn: two main examples

In fact the solution vectors v1, . . . , vk we just constructed linearly
independent.

Indeed, the linear combination t1v1 + · · ·+ tkvk has ti in the place of i-th
free unknown, so if this combination is equal to zero, then all coefficients
must be equal to zero.

All in all, it is sensible to say that these vectors form a basis in the
subspace of solutions: every vector can be obtained as their linear
combination, and they are linearly independent.

However, we only considered bases of Rn so far, and the solution set of a
system of linear equations differs from Rm. After the reading week, we
shall rectify that and talk about arbitrary “abstract” vector spaces.
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