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Previously on. . .

Theorem. Suppose that det(A) 6= 0. Then

A−1 =
1

det(A)
adj(A).

Proof. Indeed, take the formula A · adj(A) = adj(A) · A = det(A) · In, and
divide by det(A).

This theorem shows that not only a matrix is invertible when the
determinant is not equal to zero, but also that you can compute the
inverse by doing exactly one division; all other operations are addition,
subtraction, and multiplication.
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Cramer’s formula for systems of linear
equations
We know that if A is invertible then Ax = b has just one solution
x = A−1b. Let us plug in the formula for A−1 that we have:

x = A−1b =
1

det(A)
adj(A)b .

When we compute adj(A)b = CTb, we get the vector whose k-th entry is

C 1kb1 + C 2kb2 + . . . + Cnkbn .

What does it look like? It looks like a k-th column expansion of some
determinant, more precisely, of the determinant of the matrix Ak which is
obtained from A by replacing its k-th column with b. (This way, the
cofactors of that column do not change).

Theorem. (Cramer’s formula) Suppose that det(A) 6= 0. Then
coordinates of the only solution to the system of equations Ax = b are

xk =
det(Ak)

det(A)
.
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Summary of systems of linear equations

Theorem. Let us consider a system of linear equations Ax = b with n
equations and n unknowns. The following statements are equivalent:

(a) the homogeneous system Ax = 0 has only the trivial solution x = 0;

(b) the reduced row echelon form of A is In;

(c) det(A) 6= 0.

(d) the matrix A is invertible;

(e) the system Ax = b has exactly one solution;

Proof. In principle, to show that five statements are equivalent, we need
to do a lot of work. We could, for each pair, prove that they are
equivalent, altogether 5 · 4 = 20 proofs. We could prove that
(a)⇔ (b)⇔ (c)⇔ (d)⇔ (e), altogether 8 proofs. What we shall do
instead is prove (a)⇒ (b)⇒ (c)⇒ (d)⇒ (a), just 5 proofs.
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Summary of systems of linear equations
Theorem. Let us consider a system of linear equations Ax = b with n
equations and n unknowns. The following statements are equivalent:

(a) the homogeneous system Ax = 0 has only the trivial solution x = 0;

(b) the reduced row echelon form of A is In;

(c) det(A) 6= 0.

(d) the matrix A is invertible;

(e) the system Ax = b has exactly one solution;

Proof. (a)⇒ (b): by contradiction, if the reduced row echelon form has
a row of zeros, we get free variables.
(b)⇒ (c): follows from properties of determinants, elementary operations
multiply the determinant by nonzero scalars.
(c)⇒ (d): proved in several different ways already.
(d)⇒ (e): discussed early on, if A is invertible, then x = A−1b is clearly
the only solution to Ax = b.
(e)⇒ (a): by contradiction, if v a solution to Ax = b and w is a
nontrivial solution to Ay = 0, then v + w is another solution to Ax = b.
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Summary of systems of linear equations

A very important consequence (finite dimensional Fredholm alternative):

For an n × n-matrix A, the system Ax = b either has exactly one
solution for every b, or has infinitely many solutions for some
choices of b and no solutions for some other choices.

In particular, to prove that Ax = b has solutions for every b, it is enough
to prove that Ax = 0 has only the trivial solution.
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An example for the Fredholm alternative

Let us consider the following question:

Given some numbers in the first row, the last row, the first
column, and the last column of an n × n-matrix, is it possible to
fill the numbers in all the remaining slots in a way that each of
them is the average of its 4 neighbours?

This is the “discrete Dirichlet problem”, a finite grid approximation to
many foundational questions of mathematical physics.
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An example for the Fredholm alternative

For instance, for n = 4 we may face the following problem: find a, b, c , d
to put in the matrix 

4 3 0 1.5
1 a b −1

0.5 c d 2
2.1 4 2 1


so that 

a = 1
4(3 + 1 + b + c),

b = 1
4(a + 0− 1 + d),

c = 1
4(a + 0.5 + d + 4),

d = 1
4(b + c + 2 + 2).

This is a system with 4 equations and 4 unknowns.
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An example for the Fredholm alternative

In general, we shall be dealing with a system with (n − 2)2 equations and
(n − 2)2 unknowns.

Note that according to the Fredholm alternative, it is enough to prove that
for the zero boundary data we get just the trivial solution. Let aij be a
solution for the zero boundary data. Let aPQ be the largest element
among them. Since

aPQ =
1

4
(aP−1,Q +aP,Q−1+aP+1,Q +aP,Q+1) ≤ 1

4
(aPQ +aPQ +aPQ +aPQ),

the neighbours of aPQ must all be equal to aPQ . Similarly, their
neighbours must be equal to aPQ etc., and it propagates all the way to the
boundary, so we observe that aPQ = 0. The same argument appliest with
the smallest element, and we conclude that all elements must be equal to
zero. This, as we already realised, proves that for every choice of the
boundary data the solution is unique.
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Summary of systems of linear equations

For systems of equations where the number of equations is not necessarily
equal to the number of unknowns, there is one key result that we shall use
extensively in the further parts of the module.

A homogeneous system Ax = 0 with n unknowns and m < n
equations always has a nontrivial solution.

The proof is completely trivial. Indeed, there will be no inconsistencies of
the type 0 = 1, and there will be at least one free unknown since m < n.
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An application of determinants: Vandermonde
determinant

Let x1, . . . , xn be scalars. The Vandermonde determinant V (x1, . . . , xn) is
the determinant of the matrix

1 1 1 . . . 1
x1 x2 x3 . . . xn
x21 x22 x23 . . . x2n
...

...
...

. . .
...

xn−1
1 xn−1

2 xn−1
3 . . . xn−1

n

 .

Theorem. We have

V (x1, . . . , xn) =

(x2 − x1)(x3 − x2)(x3 − x1) · · · (xn − xn−1) =
∏
i<j

(xj − xi ).
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The Vandermonde determinant

A sneaky “proof”: we see that V (x1, . . . , xn) = 0 whenever xi = xj for
i 6= j (two equal columns). Therefore, the polynomial expression
V (x1, . . . , xn) is divisible by all xi − xj for i > j . But the degree of

V (x1, . . . , xn) is 1 + 2 + · · ·+ n − 1 = n(n−1)
2 (because we take one

element from each row), and the degree of the product

(x2 − x1)(x3 − x2)(x3 − x1) · · · (xn − xn−1)

is 1 + 2 + · · ·+ n − 1, so these polynomial expression differ by a scalar
multiple. Comparing the coefficients of x2x

2
3 · · · xn−1

n (the diagonal term),
we find that both coefficients are 1, so there is an equality.

There are some “gaps” that are not hard to fill but need to be filled.
Those who take the module 2214 next year, will be able to complete the
proof formally, others need some trust.
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